DOCUMENTO DE DETERMINACIÓN DE ALCANCE DEL ESTUDIO DE IMPACTO AMBIENTAL DE LA PLANTA FOTOVOLTAICA "NAVALAGUILLA I" DE 49,986 MWP Y SET COLECTORA BIENVENIDA

<u>UBICACIÓN</u> T.M. BIENVENIDA (Badajoz)

<u>PETICIONARIOS</u>

ALDESA ENERGIAS RENOVABLES S.L..

C/ Cerro del Viento Edif. Barbaño local 2 06010 Badajoz Móvil: 653.853.686/638.168.553

INDICE

1.	MEMORIA
	1.1 OBJETO1
	1.2 REDACTOR DEL DOCUMENTO
	1.3 UBICACIÓN1
	1.4 SUPERFICIE OCUPADA
	1.5 NORMATIVA DE LA COMUNIDAD AUTÓNOMA2
2.	DATOS PRINCIPALES DEL ESTUDIO
	2.1 CARACTERÍSTICAS DE LA PLANTA FOTOVOLTAICA
	2.2 TERRENOS AFECTADOS
	2.3 POBLACIONES PRÓXIMAS
	2.4 INFRAESTRUCTURAS PRÓXIMAS5
	2.5 ACCESOS A LA PLANTA FOTOVOLTAICA
3.	JUSTIFICACIÓN DEL PROYECTO Y EMPLAZAMIENTO
	3.1 JUSTIFICACIÓN DEL PROYECTO6
	3.2 JUSTIFICACIÓN DEL EMPLAZAMIENTO8
	3.2.1 Condiciones de producción8
	3.2.2 Espacios Naturales Protegidos9
	3.2.3 Vegetación
	3.2.4 Erosión
	3.2.5 Patrimonio Histórico Cultural
	3.2.6 Afección paisajística12
	3.2.7 Proximidad a núcleos urbanos
4.	JUSTIFICACIÓN DE LAS ALTERNATIVAS12
	4.1 FACTORES MEDIOAMBIENTALES DE LA PLANTA FOTOVOLTAICA "NAVALAGUILLA I"12
	4.2 FACTORES MEDIOAMBIENTALES DE LAS ALTERNATIVAS
	4.2.1 Alternativa 0: no realización del proyecto
	4.2.2 Alternativa 1
	4.2.3 Alternativa 2
	4.2.4 Comparativa de alternativas
	4.3 JUSTIFICACIÓN DE LAS ALTERNATIVAS DE LAAT DE EVACUACIÓN 400KV
	4.3.1 Factores medioambientales de las alternativas
	4.3.2 Alternativa 0: no realización del proyecto15
	4.3.3 Alternativa 1 de la LAAT 400KV16
	4.3.4 Alternativa 2 de la LAAT 400KV
5.	CARACTERÍSTICAS PRINCIPALES DEL PROYECTO
	5.1 DESCRIPCIÓN GENERAL
	5.2 PRODUCCIÓN DE ENERGÍA
	5.3 OBRA CIVIL
	5.3.1 Accesos y Viales

		5.3.2	Seguidores22
		5.3.3	Zanjas
6.	EVA	LUACI	ÓN DEL MEDIO24
	6.1	CLIMAT	ГOLOGÍA24
			GÍA
		6.2.1	Situación Geológica de Extremadura25
			Geología local
	6.3	EDAFO	LOGÍA29
	6.4	HIDRO	LOGÍA E HIDROGEOLOGÍA29
		6.4.1	Hidrología superficial y subterranea29
	6.5	FLORA	Y VEGETACIÓN31
		6.5.1	Vegetación potencial31
		6.5.2	Vegetación real
		6.5.3	Flora
	6.6	FAUNA	34
		6.6.1	Anfibios36
		6.6.2	Reptiles36
		6.6.3	Aves36
		6.6.4	Mamiferos
	6.7	ÁREAS	DE INTERÉS NATURAL40
		6.7.1	Paisaje40
7.	ANÁ	ÁLISIS	AMBIENTAL DEL PROYECTO42
	7.1	ACTUA	CIONES DEL PROYECTO SUSCEPTIBLES DE CAUSAR IMPACTO43
		7.1.1	Fase de construcción43
		7.1.2	Fase de funcionamiento
		7.1.3	Fase de clausura44
	7.2	ELEMEI	NTOS DEL MEDIO SUSCEPTIBLES DE SER AFECTADOS POR EL PROYECTO45
		7.2.1	Medio físico45
		7.2.2	Medio socio-demográfico46
		7.2.3	Matrices del impacto causa-efecto47
	7.3	VALOR	ACIÓN PRELIMINAR DE IMPACTOS48
8.	CAF	RACTER	ÍSTICAS PRINCIPALES DEL PROYECTO49
	8.1	PROTE	CCIONES AMBIENTALES DURANTE LA FASE PREOPERACIONAL49
	8.2	PROTE	CCIONES AMBIENTALES DURANTE LA FASE DE CONSTRUCCIÓN50
		8.2.1	Medidas genéricas preventivas de afecciones ambientales50
		8.2.2	Medidas preventivas y correctoras de las afecciones a la fauna51
		8.2.3	Medidas preventivas y correctoras de las afecciones al medio biótico
		8.2.4	Medidas preventivas y correctoras del impacto paisajístico53
		8.2.5	Medidas preventivas y correctoras de la afección al Patrimonio54
	8.3	PROTE	CCIONES AMBIENTALES DURANTE LA FASE DE FUNCIONAMIENTO54
		8.3.1	Medidas preventivas y correctoras de las afecciones al medio biótico54

PLANOS	56
8.4 PROTECCIONES AMBIENTALES DURANTE LA FASE DE ABANDONO	55
8.3.2 Medidas preventivas y correctoras del impacto paisajístico	55

1. MEMORIA

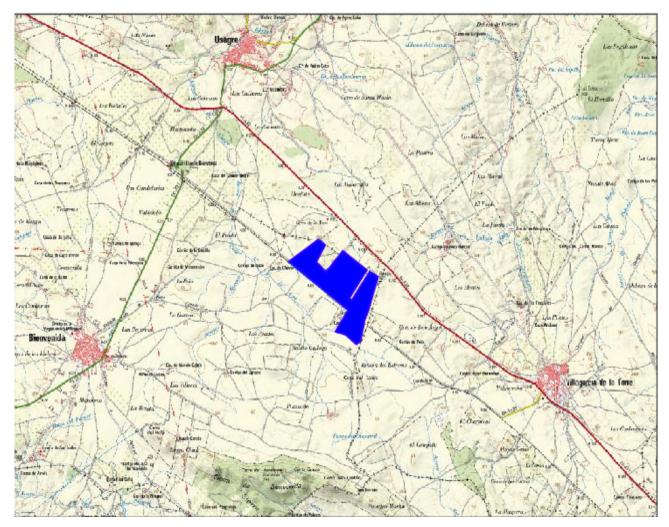
1.1 OBJETO

El presente estudio tiene por objeto servir como documento inicial ambiental para la solicitud de acceso y conexión ante la Consejería de Medio Ambiente de la Junta de Extremadura de una planta fotovoltaica denominada "NAVALAGUILLA I" con una potencia de 49,986MWp, así como sus infraestructuras de conexión que unen la Instalación Fotovoltaica a la Subestación Eléctrica colectora con otras Instalaciones Fotovoltaicas y de transformación común denominada "SET Colectora Bienvenida" donde se eleva la tensión a la red de conexión 400 kV. Desde esta subestación parte la línea aérea de evacuación de alta tensión de 400 kV donde se conecta a la Subestación "SET BIENVENIDA 400kV" perteneciente a Red Eléctrica de España, todas estas instalaciones se encuentran en el término municipal de Bienvenida, en la provincia de Badajoz.

Este documento se redacta a petición de la empresa **ALDESA ENERGÍAS RENOVABLES S.L.** con CIF: B-84247634. y con domicilio para todos los efectos en C/ Exposición, 34, Pol. Ind. Pisa, 41927 Mairena del Aljarafe (Sevilla).

Este documento se debe considerar como un análisis previo al posterior estudio de evaluación de impacto ambiental, que habrá de cumplir los contenidos y requisitos señalados en el artículo 65 y el anexo VII de la mencionada Ley 16/2015, por lo tanto es de tipo únicamente preliminar, resultado de una primera aproximación utilizando fuentes bibliográficas y cartográficas de referencia. En el marco del Estudio de Impacto Ambiental se aportará toda la información precisa, realizando en su caso los trabajos de campo y de detalle necesarios para una correcta y completa evaluación del impacto ambiental del proyecto.

1.2 REDACTOR DEL DOCUMENTO


Este documento ha sido redactado por la empresa **Ingenieros Consultores Global Energy s.l.**, con domicilio social en C/ Cerro del Viento Edif. Barbaño local 2. 06010 Badajoz.

1.3 UBICACIÓN

La instalación fotovoltaica "Navalaguilla I" se localiza en el término municipal de Bienvenida (Badajoz) en las siguientes parcelas.

T.M.	POLÍGONO	PARCELA	REF. CATASTRAL
BIENVENIDA	9	328	06020A00900328
BIENVENIDA	9	331	06020A00900331
BIENVENIDA	9	332	06020A00900332
BIENVENIDA	9	345	06020A00900345
BIENVENIDA	9	335	06020A00900335
BIENVENIDA	9	334	06020A00900334

Se adjunta documentación gráfica donde ubica la futura instalación.

1.4 SUPERFICIE OCUPADA

La superficie de ocupación prevista para la planta fotovoltaica "NAVALAGUILLA I" es de 74,5 ha. (según medición realizada en cartografía).

1.5 NORMATIVA DE LA COMUNIDAD AUTÓNOMA

Ley 16/2015, de 23 de abril, de protección ambiental de la Comunidad Autónoma de Extremadura.

El anejo IV de la Ley 16/2015, de 23 de abril, de protección ambiental de la Comunidad Autónoma de Extremadura incluye entre los proyectos sometidos a evaluación ambiental ordinaria los siguientes:

(...)

Grupo 3. Industria energética

(...)

j) Instalaciones para la producción de energía eléctrica a partir de la energía solar destinada a su venta a la red, que no se ubiquen en cubiertas o tejados de edificios existentes y que ocupen más de 50 ha de superficie o más de 5 ha en áreas protegidas.

El proyecto objeto de esta documentación estaría incluido en este epígrafe.

Asimismo, el artículo 64 de esa misma ley menciona, entre otras cosas, lo siguiente:

- Con anterioridad al inicio del procedimiento de evaluación de impacto ambiental ordinaria, el promotor podrá solicitar al órgano ambiental que elabore un documento de alcance del estudio de impacto ambiental. El plazo máximo para la elaboración del documento de alcance es de tres meses contados desde la recepción de la solicitud del documento de alcance.
- 2. Para ello, el promotor presentará ante el órgano sustantivo una solicitud de determinación del alcance del estudio de impacto ambiental, acompañada del documento inicial del proyecto, que contendrá, como mínimo, la siguiente información:
 - a) La definición, características y ubicación del proyecto.
 - b) Las principales alternativas que se consideran y un análisis de los potenciales impactos de cada una de ellas.
 - c) Un diagnóstico territorial y del medio ambiente afectado por el proyecto.

El órgano administrativo competente en el ámbito territorial de la Comunidad Autónoma de Extremadura es actualmente la Dirección General de Medio Ambiente de la Junta de Extremadura, a tenor de lo dispuesto en la Ley 16/2015 del 23 de abril de 2015.

2. DATOS PRINCIPALES DEL ESTUDIO

2.1 CARACTERÍSTICAS DE LA PLANTA FOTOVOLTAICA

La planta fotovoltaica proyectada consta de 98.982 módulos fotovoltaicos Monocristalinos fofotovoltaicos montados en seguidores solares, con un motor sobre eje de torsión. La planta solar se agrupa en 16 inversores y 8 centros transformación. La superficie de ocupación de los seguidores de la planta es de aproximadamente 74,5 has.

La instalación eléctrica proyectada permitirá la evacuación de la energía generada desde cada uno de los módulos fotovoltaicos hasta la subestación transformadora "SET Colectora Bienvenida" y desde allí al punto de conexión con la red de transporte en la subestación "SET Bienvenida 400 kV", perteneciente a Red Eléctrica de España.

2.2 TERRENOS AFECTADOS

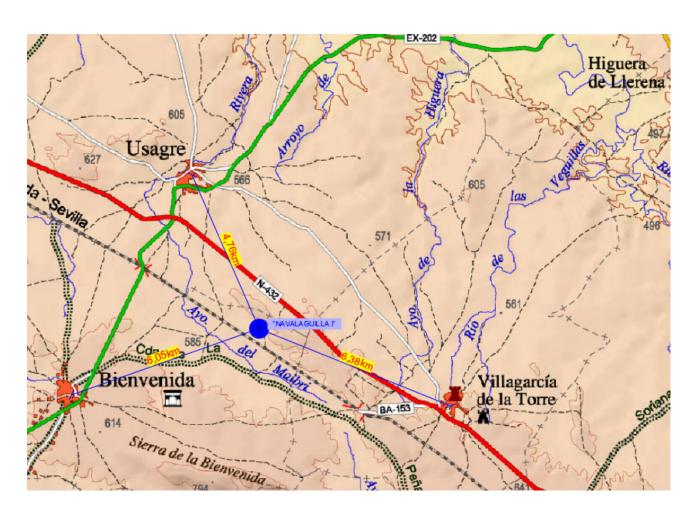
El área de afección de la Instalación Solar Fotovoltaica "Navalaguilla I", que será el área en la que se desarrollen las obras de ejecución de la Instalación Solar Fotovoltaica, será la definida por el área de las parcelas que se indican en los planos adjuntos, también puede apreciarse esta área de afección en el anexo de planos que se adjunta.

La instalación ocupará una extensión aproximada de 74,5 ha, concretamente en el interior de los vértices de las siguientes coordenadas ETRS89 UTM Huso 29 S:

NºPUNTOS	COORDENADA X	COORDENADA Y
P01	748964.69	4244710.15
P02	749583.93	4245144.03
P03	748964.69	4245037.04
P04	749485.04	4244662.47
P05	749793.19	4244459.28
P06	750147.28	4244740.30
P07	750325.35	4244695.25
P08	750462.20	4243848.74
P08	750462.20	4243848.74
P09	750379.74	4243848.74
P10	750801.31	4243706.30
P11	750743.26	4243537.26
P12	749846.59	4244128.57

La elección de este emplazamiento se justifica por la alta radiación solar existente, el posible reaprovechamiento de los terrenos y sus características geomorfológicas, así como la proximidad de una subestación de la compañía distribuidora.

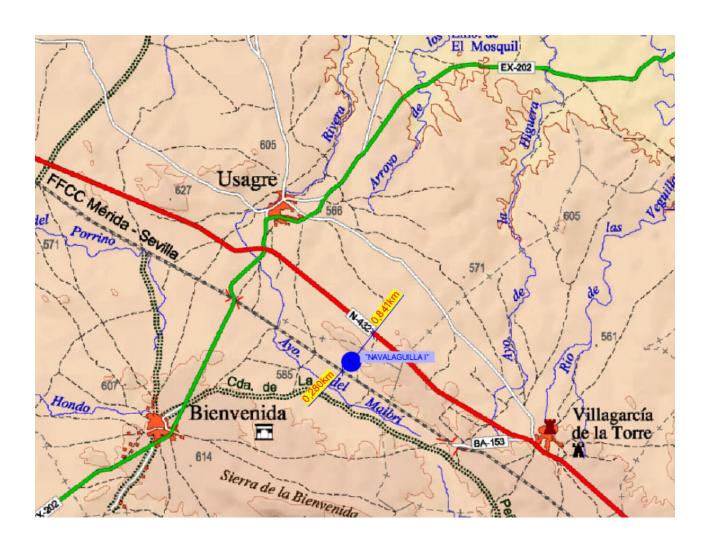
Los contenedores con los centros de transformación e inversores se ubicarán a lo largo de los viales de la instalación solar, y se conectarán mediante la red de MT subterránea que discurrirá por las cunetas de dichos viales.


2.3 POBLACIONES PRÓXIMAS

La instalación fotovoltaica "Navalaguilla I" se localiza en el término municipal de Bienvenida (Badajoz). La estación fotovoltaica se encuentra situado entre los parajes conocidos como "Navalagrulla y la Vera" y queda dividida por la línea de ferroviaria existente "Mérida-Sevilla".

A continuación, se detallan los núcleos próximos a la instalación fotovoltaica:

MUNICIPIO	DIRECCIÓN	DISTANCIA(KM)
BIENVENIDA	OESTE	6,05
USAGRE	NOR-OESTE	4,76
VILLAGARCIA DE LA TORRE	ESTE	6,38
DELIMATADO POR EL SUR POR LA PROPIA SIERRA DE BIENVENIDA		


Sin duda el núcleo de población más importante es del término municipal de Bienvenida, con una población de 2.087 habitantes (fuente INE), seguida por Usagre con sus 1.763 habitantes y Villagarcía de la Torre 907 habitantes.

2.4 INFRAESTRUCTURAS PRÓXIMAS

Respecto a las infraestructuras próximas a la instalación fotovoltaica, se detallan a continuación:

INFRAESTRUCTURA	DIRECCIÓN	DISTANCIA(KM)
FFCC MÉRIDA-SEVIILA	SUR	0,280
CARRETERA N-432	NORTE	0,841

2.5 ACCESOS A LA PLANTA FOTOVOLTAICA

Está previsto que el acceso a la Central Fotovoltaica Navalaguilla sea a través de la N-432 dirección a Villagarcía de la Torre en el punto kilométrico 100.2, por el cual tenemos acceso por el vial propio de la finca "La Vera".

3. JUSTIFICACIÓN DEL PROYECTO Y EMPLAZAMIENTO

3.1 JUSTIFICACIÓN DEL PROYECTO

En la actualidad se ha aceptado a nivel internacional que la emisión de los gases procedentes de la utilización de combustibles fósiles es una de las causas del llamado "calentamiento global". Las previsiones científicas, entre otras, del Panel de Expertos sobre Cambio Climático, contemplan la posibilidad de que a lo largo de los próximos 50 años, si no se adoptan medidas drásticas de disminución de las emisiones, numerosas regiones del globo sufrirán los efectos de un progresivo cambio en los regímenes climáticos tradicionales, algunos de los cuales podrían ser devastadores tanto para los aprovechamientos y producciones básicas para el consumo humano como para los propios núcleos de población, además de afectar con

toda seguridad diferentes ecosistemas costeros como manglares, marismas, dunas, etc., debido a un incremento del nivel del mar como consecuencia de la licuefacción de los hielos polares.

Una de las medidas consensuadas en estos foros y reuniones internacionales es la necesidad urgente de reducir las emisiones producidas por la producción de energía a partir de combustibles fósiles, mediante la potenciación de otros sistemas de aprovechamiento energético que puedan desplazar las fuentes de producción contaminantes. En este sentido, la Unión Europea, en el Marco de Políticas de Energía y Cambio Climático 2021-2030, adoptado dentro del programa de aplicación del Protocolo de Kyoto, establece para 2030 una reducción del 40% de las emisiones de gases de efecto invernadero respecto a 1990, y un consumo de un 27% de energías renovables.

Dentro de las medidas de cumplimiento del protocolo de Kyoto, la UE promulgó la Directiva 2009/28/CE del Parlamento europeo y del Consejo, de 23 de abril, relativa al fomento del uso de energía procedente de fuentes renovables, en la que se establece que cada Estado miembro elaborará un Plan de Acción Nacional en materia de Energías Renovables (PANER) para conseguir los objetivos nacionales fijados en la propia Directiva.

Para España estos objetivos se cifraban en un 20% del consumo final bruto de energía generado a partir de fuentes renovables, con un porcentaje en el transporte del 10%, en el año 2020. Uno de los sistemas de aprovechamiento energético que puede permitir la consecución de estos objetivos es el de la energía solar fotovoltaica. En el PANER 2011 – 2020 se preveía un incremento de la potencia total instalada de 4.346 MW en ese periodo. Por tanto, es indudable la necesidad de potenciar la instalación de instalaciones solares fotovoltaicas ligados a las redes de distribución de energía si se quiere cumplir con las recomendaciones de los foros internacionales y con las responsabilidades legales contraídas por el Estado Español.

Dentro de este marco internacional, europeo y estatal, la política energética formulada por el Gobierno extremeño ha establecido estos objetivos en la Estrategia de cambio climático para Extremadura, 2003-2020, siendo el primero de los objetivos contempladas en ella "fomentar el uso de energías renovables como motor energético autonómico", y dentro de dicho objetivo se hace referencia específica a las instalaciones de energía solar fotovoltaica de gran tamaño.

Por otro lado, añadido a los beneficios ambientales reseñados, la inversión en generación de energía a partir de fuentes renovables en los municipios afectados puede ser una importante fuente de empleo local y tener repercusiones positivas en la cohesión social. La construcción de la central fotovoltaica puede contribuir a dinamizar algunas pequeñas empresas locales

(construcción, empresas eléctricas, talleres mecánicos, almacenes mayoristas, hostelería, etc.), diversificar la actividad económica de la zona y encontrar mejores oportunidades laborales en el entorno.

Las instalaciones de generación renovable se caracterizan por funcionar con fuentes de energía que poseen la capacidad de regenerarse por sí mismas y, como tales, ser teóricamente inagotables si se utilizan de forma sostenible. Esta característica permite en mayor grado la coexistencia de la producción de electricidad con el respeto al medio ambiente. Este tipo de proyectos, presentan las siguientes ventajas respecto a otras instalaciones energéticas, entre las que se encuentran:

- Disminución de la dependencia exterior de fuentes fósiles para el abastecimiento energético, contribuyendo a la implantación de un sistema energético renovable y sostenible y a una diversificación de las fuentes primarias de energía...
- Utilización de recursos renovables a nivel global.
- No emisión de CO2 y otros gases contaminantes a la atmósfera.
- Baja tasa de producción de residuos y vertidos contaminantes en su fase de operación.

El proyecto de la Instalación Fotovoltaica "Navalaguilla I" desarrollado por ALDENER SL., surge como respuesta a una necesidad genérica de la sociedad, atendida por la administración pública favoreciendo el desarrollo de esta forma la generación de energía renovable y limpia; igualmente surge como una oportunidad de negocio para sus promotores, dado que el proyecto prevé rentabilidad económica suficiente para sufragar los gastos de la inversión necesaria y para generar beneficios socioeconómicos en el entorno en que se desarrolla.

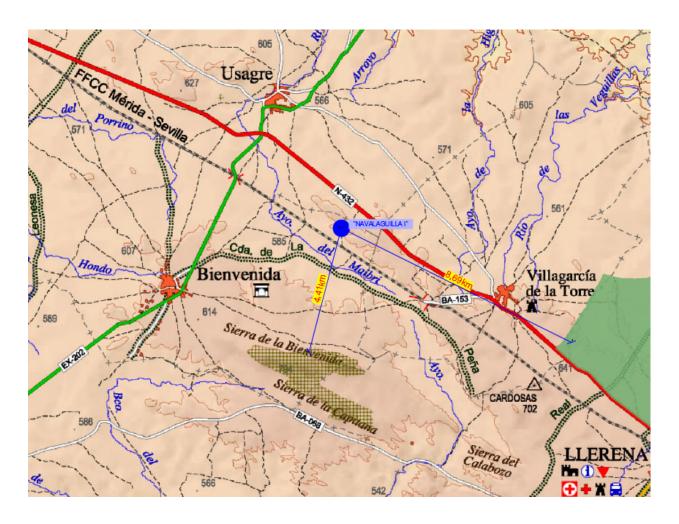
3.2 JUSTIFICACIÓN DEL EMPLAZAMIENTO

En lo que respecta a la justificación del emplazamiento seleccionado, se detallan a continuación los principales aspectos que han llevado a la elección del emplazamiento, remarcando especialmente los aspectos ambientales.

3.2.1 Condiciones de producción

El emplazamiento elegido para la ubicación de la planta solar presenta unas excelentes condiciones para la producción de energía solar fotovoltaica:

- Se sitúa en una zona de pendientes suaves (en general, inferior al 5%), lo que minimiza los trabajos de obra civil necesarios para su construcción y los movimientos de tierra asociados.



- Accesibilidad a las instalaciones de la Instalación Solar Fotovoltaica.
- Relación con otras infraestructuras eléctricas existentes y/o proyectadas, para evitar posibles impactos sinérgicos y acumulativos.
- Se encuentra en una parcela desarbolada y sin ningún tipo de infraestructura o accidente geográfico que proyecte sombra sobre la central.

3.2.2 <u>Espacios Naturales Protegidos</u>

La zona de estudio no incluye terrenos pertenecientes a ningún Espacio Natural Protegido declarado por el Ministerio de Medio Ambiente ni que forme parte de la Red de Áreas Protegidas de Extremadura. Tampoco incluye superficies incluidas en la Red Natura 2000. Por último, el parque no incluye espacios que figuren en ningún catálogo de espacios naturales de interés promovido por entidades privadas (IBAs, por ejemplo) ni por convenios internacionales (zonas RAMSAR).

En la figura siguiente queda representado la ubicación de la planta fotovoltaica "Navalaguilla I" y las distancias a las zonas ZEPA más próximas.

3.2.3 Vegetación

La vegetación es un factor de especial relevancia, ya que es un indicador que integra toda una serie de parámetros físico-químicos y bióticos del medio, así como las relaciones tradicionales existentes entre el medio humano y el natural. El interés del estudio de las comunidades vegetales es triple: como indicador de la calidad ambiental de un territorio; como soporte físico y ecológico del hábitat de especies de la fauna y, como componente esencial del paisaje.

La vegetación predominante en la planta fotovoltaica "Navalaguilla I" y entorno natural de Bienvenida, está compuesta por: Herbazales (64%), debido a su cercanía a la comarca de la Campiña sur, seguido por Tierras agrícolas y prados artificiales (23%), y en tercer lugar nos encontramos las dehesas con un 10% de su territorio

En cuanto a los paisajes y parajes naturales que existen en el Término Municipal de Bienvenida, contamos con la Sierra de Bienvenida y el parque natural en la zona sur de la localidad.

La Sierra de Bienvenida, se haya situada al este de Bienvenida, a poca distancia del pueblo, a la izquierda de la carretera que une Fuente de Cantos con Llerena, aunque el mejor acceso es a través de la pista forestal que va desde Bienvenida a Villagarcía de la Torre, desviándose en el primer camino que aparece a la derecha.

En pleno corazón de la campiña cerealista, aparece este paraje, ejemplo representativo del matorral mediterráneo, como inicio de una cordillera más amplia formada, además, por las Sierras de la Capitana y del Calabozo, ambas y en el término municipal de Llerena. Su altitud media está entre los 650 y 750 n s.n.m., alcanzándose su punto más elevado en el Cerro del Monigote con 794 m, señalizado como vértice Geodésico por el Instituto Geográfico Nacional. Las pendientes de sus laderas son del 20-30 por ciento.

El recorrido por esta Sierra, de oeste a este, se inicia en una pequeña loma carente de vegetación arbórea y abrasiva, como continuación de ecosistema de pseudoestepa que le precede, para ir poco a poco ascendiendo hasta llegar el Cerro del Monigote donde la vegetación natural ha sido sustituida por pinares de pinos piñoneros, apareciendo un sotobosque no muy denso formado fundamentalmente por especies de Cestáceas (jaras y jaguarzos), con el jaguarzo morisco (Cistus crispus) y el jaguarzo blanco (Cistus albidus) como principales representantes.

En la cumbre de este monte se ven algunos olivares de poca extensión, lo que nos hace pensar que parte de esta sierra pudo estar cubierta por este cultivo, pues, más adelante, en el Cerro Gordo, aparece un olivar abandonado desde hace tiempo, donde el matorral ha ido ocupando terreno adquiriendo por ello en esta zona su mayor espesura y variedad, así encontramos encinas de pequeño porte, coscoja, lentisco, jaguarzos, lavádula, olivilla, torbisco, rusco, madreselva, tomillo, etc.. formando un entramado que hace difícil a veces caminar en su interior. Es en esta parte de la Sierra, aunque en general en toda ella por formar una "isla" dentro de la pseudoestepa, donde gran número de animales encuentra su hábitat, pues junto al abigarramiento de la vegetación, que le sirve de refugio, los olivos y las pequeñas encinas les proporcionan abundante alimento. Las especies más comunes en este ecosistema son currucas, zorzales, rabilargos, milanos, águilas culebreras, ratoneros, zorros, tejones, meloncillos, jinetas, etc...

Por último, y antes de entrar en la Sierra de la Capitana, se aprecia una clara separación, en la ladera norte, entre esta zona de matorral y la dehesa de encinas que continúa en el resto de la sierra. En esta parte, por su cara sur, también existen algunos pies de eucaliptos como continuación de la repoblación llevada a cabo en la finca Cantalgallo, próxima a la Sierra, y que aquí no llegó a concluir.

El Parque Público En la zona sur de la villa de Bienvenida nos encontramos con el parque natural, se haya muy cerca o casi colindando con la Ermita Ntra. Sra. De los Milagros.

Se encuentra una perfecta combinación de especies arbóreas como pueden ser (pinos, castaños, palmeras, cipreses, etc ...) así como especies de arbustos, setos, rosales, claveles, margaritas, etc...

3.2.4 Erosión

El emplazamiento elegido se sitúa sobre pendientes suaves, con cobertura vegetal abundante y sin la existencia de una red hidrográfica de importancia, por lo que los riesgos de erosión son, en general, reducidos.

3.2.5 <u>Patrimonio Histórico Cultural</u>

Las revisiones efectuadas no detectaron, a priori, incidencias sobre el Patrimonio Arqueológico incluido en la Carta Arqueológica de Extremadura. Por otro lado, se han revisado las prospecciones realizadas en las proximidades en el marco de la tramitación ambiental de otros proyectos similares, sin que se haya detectado la existencia de elementos relevantes. En todo caso, el Estudio de Impacto Ambiental incluirá una prospección intensiva del emplazamiento del proyecto.

3.2.6 Afección paisajística

La central fotovoltaica se ubica sobre una penillanura ondulada algo accidentada por el efecto erosivo del río Ardila. La distancia a núcleos habitados, a vías de comunicación de primer orden, a rutas de interés turístico y la escasa prominencia del emplazamiento previsto respecto al entorno circundante hacen que no sea previsible una intrusión paisajística que pudiera generar afecciones importantes a este elemento.

3.2.7 Proximidad a núcleos urbanos

No existen cascos urbanos a menos de 4,76 km de la central fotovoltaica propuesta.

4. JUSTIFICACIÓN DE LAS ALTERNATIVAS

4.1 FACTORES MEDIOAMBIENTALES DE LA PLANTA FOTOVOLTAICA "NAVALAGUILLA I"

Una vez definido el emplazamiento de la central fotovoltaica se han de analizar las diversas alternativas de aprovechamientos que se pueden llevar a cabo. Estas alternativas van desde la selección del tipo de panel fotovoltaico a emplear al número de paneles a implantar en función de la potencia total que se desea instalar, finalizando con la selección de los lugares de ubicación de los paneles y resto de infraestructuras asociadas (viales, zanjas de cableado, ubicación de las zonas de obra temporales durante la construcción, etc.).

En cuanto a la elección del modelo de panel fotovoltaico, la mejora tecnológica experimentada en los últimos años permite la utilización de paneles con una mayor eficiencia. Se va a instalar paneles solares de tecnología más moderna, que permiten minimizar la superficie de ocupación por unidad de potencia producida.

Durante la fase de planificación del proyecto se analizó detalladamente el diseño de la futura instalación con el fin de obtener la máxima rentabilidad y eficiencia, a la vez que el mínimo impacto ambiental. A continuación, se presentan las características principales de las alternativas consideradas para el diseño de las instalaciones de la planta solar.

4.2 FACTORES MEDIOAMBIENTALES DE LAS ALTERNATIVAS

Las distintas alternativas con las diferentes soluciones de instalación y/o trazado de esta línea se han considerado teniendo en cuenta únicamente los factores medioambientales, por lo que teniendo en cuenta estos criterios se han estudiado dos alternativas 1 y 2 a la propuesta.

4.2.1 Alternativa 0: no realización del proyecto

La alternativa 0 plantea la no realización del proyecto. Esto supondría efectivamente evitar un pequeño impacto ambiental en una zona que no pertenece a ningún espacio protegido (zona especial de conservación, zona especial de conservación de aves, lugar de interés comunitario, etc.), pero supone renunciar a un proyecto de producción de energía en línea con las directrices ambientales de las administraciones extremeña, española y europea, así como con las de los organismos internacionales, además de a proporcionar recursos y mano de obra a la comarca.

Por todo ello, y teniendo en cuenta el compromiso adquirido tanto por el Estado Español como por la Comunidad Autónoma Extremeña de incrementar la generación de energía a partir de fuentes renovables, y la posibilidad de minimizar al máximo sus impactos ambientales, el proyecto se considera inicialmente como viable desde el punto de vista ambiental, sin prejuicio de los resultados del preceptivo procedimiento de tramitación ambiental.

4.2.2 Alternativa 1

La Alternativa 1 fue la contemplada inicialmente, en la que se primaba la ocupación de las zonas en las que fuese técnicamente viable la instalación de paneles fotovoltaicos en el entorno del emplazamiento escogido.

4.2.3 Alternativa 2

La Alternativa 2 se basa, por un lado, en la necesidad de maximizar la eficiencia de las instalaciones y minimizar los impactos que se puedan generar en el medio ambiente.

Esto ha llevado fundamentalmente a suprimir algunos de los paneles inicialmente previstos y a reubicar otros, principalmente por dos causas:

- Eliminación de los seguidores cuya instalación requiere movimientos de tierra significativos. Son aquellos situados en terrenos con una pendiente superior a la tolerancia de los seguidores, que es de un ±5% de pendiente del terreno. Los terrenos sobre los que se van a situar los paneles tienen, por tanto, que ser explanados si la pendiente natural es superior a ese 5%, con el consiguiente movimiento de tierras, por lo que se ha optado por eliminar aquellos cuya ubicación implica la realización de movimientos de tierras más significativos. Esto ha supuesto la eliminación de una serie de seguidores.
- Optimización de la superficie de ocupación: una vez eliminados los paneles descritos en el punto anterior, se ha procedido a rediseñar el conjunto de la central, optimizando la relación entre el número de paneles instalados, la mejora de la eficiencia del propio panel propuesto para esta alternativa y la superficie de ocupación. Esto ha implicado la eliminación de los paneles más periféricos y la reubicación de otros.

Los paneles suprimidos o reubicados por cada una de estas dos razones se muestran en la figura 1.

Figura 1. Paneles alternativa 2 en azul oscuro, paneles eliminados o reubicados alternativa 1 en rojo.

4.2.4 Comparativa de alternativas

Hay que tener en cuenta que las modificaciones realizadas en la Alternativa 1 para obtener finalmente la Alternativa 2 seleccionada, respondieron fundamentalmente a condicionantes ambientales, como son la minimización de la obra civil necesaria para la construcción del parque (especialmente los movimientos de tierra) y la optimización de la relación entre los paneles instalados y la superficie de ocupación de la planta.

De esta forma, la alternativa 2 presenta una superficie de ocupación menor y los movimientos de tierra se reducen significativamente, al eliminar las explanaciones necesarias en los paneles situados en zonas de mayor pendiente.

La eliminación de las actuaciones en las zonas con mayor pendiente reduce significativamente los riesgos de erosión tanto durante las obras de construcción como durante el periodo de funcionamiento de la central fotovoltaica. Probablemente también se reduzcan las afecciones sobre la flora, la vegetación y la fauna, al reducir el volumen de movimiento de tierras, la obra civil y la superficie de ocupación tanto temporal como permanente. Por último,

la menor superficie de afección y la menor pendiente de las zonas ocupadas reducen el impacto paisajístico.

Por otro lado, la alternativa 2 no modifica significativamente ninguno de los otros componentes del parque ni en ubicación ni en dimensiones respecto a la alternativa 1 (viales de acceso, viales interiores, red de cableado de media tensión, etc.).

Una vez analizadas las alternativas planteadas, se concluye que la Alternativa 2 es la más adecuada desde el punto de vista ambiental.

4.3 JUSTIFICACIÓN DE LAS ALTERNATIVAS DE LAAT DE EVACUACIÓN 400KV

Una vez definido el emplazamiento del centro de transformación se define el trazado para la futura línea de evacuación. Estas alternativas van desde el soterramiento parcial o total de la línea hasta únicamente el trazado aéreo, finalizando con la selección de los lugares de ubicación de los posible apoyos y resto de infraestructuras asociadas (viales, zanjas de cableado, ubicación de las zonas de obra temporales durante la construcción, etc...).

Durante la fase de planificación del proyecto se analizó detalladamente el diseño de la futura instalación con el fin de obtener la máxima rentabilidad y eficiencia, a la vez que el mínimo impacto ambiental. A continuación, se presentan las características principales de las alternativas consideradas para el diseño de la línea de evacuación.

4.3.1 <u>Factores medioambientales de las alternativas</u>

Las distintas alternativas con las diferentes soluciones de instalación y/o trazado de esta línea se han considerado teniendo en cuenta únicamente los factores medioambientales, por lo que teniendo en cuenta estos criterios se han estudiado dos alternativas 1 y 2 a la propuesta.

4.3.2 <u>Alternativa 0: no realización del proyecto</u>

La alternativa 0 plantea la no realización del proyecto. Esto supondría efectivamente evitar un pequeño impacto ambiental en una zona que no pertenece a ningún espacio protegido (zona especial de conservación, zona especial de conservación de aves, lugar de interés comunitario, etc.), pero supone renunciar a un proyecto de producción de energía en línea con las directrices ambientales de las administraciones extremeña, española y europea, así como con las de los organismos internacionales, además de a proporcionar recursos y mano de obra a la comarca.

Por todo ello, y teniendo en cuenta el compromiso adquirido tanto por el Estado Español como por la Comunidad Autónoma Extremeña de incrementar la generación de energía a partir de fuentes renovables, y la posibilidad de minimizar al máximo sus impactos ambientales, el

proyecto se considera inicialmente como viable desde el punto de vista ambiental, sin prejuicio de los resultados del preceptivo procedimiento de tramitación ambiental.

4.3.3 Alternativa 1 de la LAAT 400KV

La Alternativa 1 de la línea aérea de alta tensión 220 kV para la evacuación que fue contemplada inicialmente, en la que se primaba el soterramiento de la línea en las zonas en la que fuese técnicamente viable, desde "SET COLECTORA BIENVENIDA" hasta el "SET BIENVENIDA 400kv" (REE).

4.3.4 Alternativa 2 de la LAAT 400KV

La Alternativa 2 de la LAAT se basa, por un lado, en la necesidad de maximizar la eficiencia de las instalaciones y minimizar los impactos que se puedan generar en el medio ambiente.

Esto ha llevado fundamentalmente eliminar la opción de soterramiento de línea y optar por un trazado exclusivamente aéreo, con el fin de realizar el menor movimiento de tierra posible y así no debilitar la edafología de la zona que conlleva el soterramiento parcial o total de la línea hasta su evacuación, de esta forma también se disminuye el impacto acústico y el aumento de polvo, partículas en el aire que generan todo este tipo de obras. Por lo cual y desde el punto de vista medioambiental la línea de evacuación se ejecutará de forma aérea.

SET BENYBOA AO IV (PIE)

En la siguiente figura 2 se muestran las dos alternativas.

Línea alternativa 2 en verde, línea enterrada en rojo discontinua

5. CARACTERÍSTICAS PRINCIPALES DEL PROYECTO

5.1 DESCRIPCIÓN GENERAL

Las características generales de la instalación fotovoltaicas de los equipos previstos para su montaje según el Anteproyecto son los siguientes:

POTENCIA PICO DE LA PLANTA	49,986 MWp
POTENCIA NOMINAL DE LA PLANTA	47,320 MWp

Tabla 1. Potencia de la planta solar fotovoltaica.

	MÓDULOS FOTOVOLTAICOS	Nº de paneles	98.982
		Marca	Risen Energy Co., Ltd
		Modelo	RSM150-8-505M
		Células	150 células, potencia pico unitaria de 480-505 Wp
		Tecnología	Silicio monocristalino

Tabla 2. Características de los módulos fotovoltaicos.

SEGUIDOR SOLAR	Sistema	Seguidor un eje horizontal 2Vx50 metros
	Marca	SOLTEC
	Modelo	SF Utility - 1500V
	Motor	Un motor sobre un eje de torsión

Tabla 3. Características de los seguidores solares.

	Potencia máxima	3550 kVA (50°C)
	Marca	POWER ELECTRONICS
INVERSOR-	Modelo	FS3430KU_645V_20191105
TRANSFORMADOR (Primario)	Tensión máx. DC	1500 VDC
(**************************************	Tensión nominal CA	645 VAC
	Total skid	8 Ud. centros de inversión-transformación

Tabla 4. Características de los inversores-transformadores.

	Potencia máxima	2365.0 kVA (50°C)
	Marca	POWER ELECTRONICS
INVERSOR-	Modelo	FS2150KU_645V_20191105
TRANSFORMADOR (Secundario)	Tensión máx. DC	1500 VDC
(0000000)	Tensión nominal CA	645 VAC
	Total skid	8 Ud. centros de inversión-transformación

Tabla 5. Características de los inversores-transformadores

Se plantea una serie de campos solares unidos eléctricamente en baja tensión en corriente continua desde las cajas de agrupamiento de strings hasta los centros de inversión y transformación, correspondiendo una total de 1240 seguidores solares de dos módulos en vertical por 50 metros de longitud, resultando un total de 98.982 módulos fotovoltaicos por unidad de centros de inversión y transformación.

Para la potencia pico instalada se ha previsto disponer de un total de 8 centros de inversión y transformación, los cuales irán eléctricamente encadenados en grupos de tres, de manera que desde el primero de cada cadena se evacue la energía total generada por los tres directamente hasta subestación, a un nivel de tensión de 30 kV, discurriendo los cables en disposición enterrada directamente en fondo de zanja. Para ello está previsto el empleado de cable tipo AI, RHZ1 18/30kV de secciones telescópicas variables según los valores de intensidad máxima admisible, caída de tensión y tensión por cortocircuito.

Todo se comprende mejor mediante el esquema resumen siguiente:

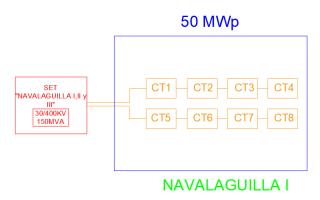


Tabla 6. Agrupamiento eléctrico de los centros de inversión y transformación.

La instalación se compone de una parte de baja tensión en corriente continua (CC), que contemplará la conexión entre módulos y de éstos con los inversores; de otra parte de baja tensión correspondiente a la corriente alterna (AC) que comprende aquella parte de las instalaciones comprendidas entre la salida de los inversores y las bornas de baja tensión del transformador de los centros de transformación; y por último, la red de media tensión (MT) que conecta los centros de transformación hasta la Subestación Elevadora Transformadora (SET) 30/220kV.

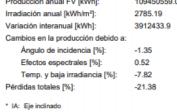
Los cables de BT en corriente continua que unen los módulos fotovoltaicos con las cajas de agrupamiento de strings, serán conforme la norma UNE-EN 50618, unipolares flexibles de cobre, de aislamiento y cubierta de compuesto reticulado libre de halógenos y con baja emisión de humos (Z2) y de tensión nominal en corriente continua de 0,6/1kV entre conductores y entre conductor y tierra (Uo/U), esto es, 1,5/1,5 kV.

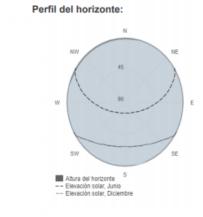
Los cables de BT en corriente continua que unen las cajas de agrupamiento de strings con los centros de inversión y transformación, serán conforme la norma UNE-HD 603-5X, unipolares de aluminio, de aislamiento de polietileno reticulado (XLPE), cubierta de poliolefina (Z1) y de tensión asignada (Uo/U) 0,6/1kV en corriente continua.

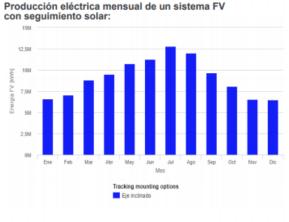
El cálculo de la sección de los cables de corriente continua se realizará teniendo en cuenta que entre dos puntos del circuito de CC el valor máximo de caída de tensión no será superior al 1,5% para la intensidad nominal.

La sección de los cables se determinará bajo los siguientes tres criterios:

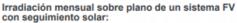
- Máxima corriente en servicio permanente.
- Máxima corriente en condiciones de cortocircuito.
- Caída de tensión.


5.2 PRODUCCIÓN DE ENERGÍA


De acuerdo con los datos proporcionados por el Sistema de Información Geográfico de la Comisión Europea mediante su herramienta de base de datos PVGIS, para la zona de ubicación de la planta fotovoltaica, se obtiene el siguiente valor de radiación solar directa.


PVGIS-5 valores estimados de la producción eléctrica solar

Datos proporcionados: Latitud/Longitud: 38.316, -6.142 Calculado Horizonte: Base de datos: PVGIS-SARAH Tecnología FV: Silicio cristalino FV instalado: 49986 kWp Pérdidas sistema: 14 %


Resultados de la simulación Ángulo de inclinación [°]: 37 (opt) Producción anual FV [kWh]: 109450559.06 2785.19 Irradiación anual [kWh/m²]: Variación interanual [kWh]: 3912433.9 Cambios en la producción debido a: Ángulo de incidencia [%]: -1.35Efectos espectrales [%]: 0.52 Temp. y baja irradiancia [%]: -7.82 Pérdidas totales [%]: -21.38

Conforme a las especificaciones técnicas del fabricante de los equipos utilizados para el diseño y su depreciación a lo largo del tiempo la producción de energía prevista para un periodo de 25 años se muestra en la siguiente tabla.

Año	Producción [GWh]	Producción específica [kWh/kWp]	Performance ratio [%]
1	96,8	1904,0	84,67
2	96,5	1898,2	84,42
3	96,2	1892,5	84,16
4	95,9	1886,7	83,90
5	95,6	1880,9	83,65
6	95,3	1875,1	83,39
7	95,1	1869,3	83,13
8	94,8	1863,5	82,87
9	94,5	1857,7	82,62
10	94,2	1851,9	82,36
11	93,9	1846,1	82,10
12	93,6	1840,3	81,84
13	93,3	1834,5	81,58
14	93,0	1828,7	81,33
15	92,7	1822,9	81,07
16	92,4	1817,1	80,81
17	92,1	1811,3	80,55
18	91,8	1805,5	80,29
19	91,5	1799,7	80,03
20	91,2	1793,9	79,77
21	90,9	1788,1	79,52
22	90,6	1782,2	79,26
23	90,3	1776,4	79,00
24	90,0	1770,6	78,74
25	89,7	1764,8	78,48
Total	2332,0	1834,5	81,6

5.3 OBRA CIVIL

Con carácter general, la infraestructura de obra civil se ha diseñado con el criterio de reducir al máximo el movimiento de tierras de cara a afectar a la menor superficie posible, y minimizar con ello el impacto sobre la vegetación y los riesgos erosivos. Con este mismo criterio, el hormigón necesario para la cimentación se obtendrá de las plantas de hormigón ubicadas en las zonas debidamente autorizadas.

La obra civil necesaria para la construcción, puesta en marcha y explotación de la Instalación Solar Fotovoltaica consiste en lo siguiente:

- Apertura, preparación y acondicionado de los caminos de acceso al emplazamiento de la instalación, para el traslado de los equipos.
- Canalizaciones para el soterramiento de las ternas de cables. Características

especificadas anteriormente.

• La relativa a la subestación y su edificio de control. Características especificadas anteriormente.

El movimiento de tierras se ha de reducir al máximo con el objeto de afectar a la menor superficie posible, y minimizar con ello el impacto sobre la vegetación y los riesgos erosivos.

5.3.1 Accesos y Viales

Se acondicionarán o crearán las vías que dan acceso a al emplazamiento de las instalaciones, así como vías internas para acceso a las distintas zonas de esta como a la subestación y edificio de control. Estos caminos alcanzarán una longitud total de 2.512 metros y requerirán el siguiente movimiento de tierras.

	LONGITUD (m)	DESBROCE (m²)	EXCAVACIÓN (m³)	TERRAPLENES Y RELLENOS (m³)	BALANCE A VERTEDERO (m³)
VIALES	2.512	10.048	2.009,60	1.808,64	200,96

Es necesario conservar los caminos en perfectas condiciones a lo largo del tiempo, para la construcción, explotación y mantenimiento de las instalaciones de la Instalación SolarFotovoltaica y se han diseñado teniendo en cuenta esta característica.

Los datos principales de diseño son:

- La anchura mínima del vial 3 m.
- La altura libre del trayecto 5 m.
- El máximo peso desplazado por los vehículos es el de un camión pluma o camión con grúa autocargante.
- Cunetas, con cualquier pendiente, a un lado del camino para recogida de aguas de lluvia, que permite una perfecta conservación del camino. Las cunetas desaguarán en cauces naturales, en su caso se conducirá la recogida mediante imbornal, y caño de cruce (vierteaguas). En los puntos donde se alcance la capacidad hidráulica de la cuneta se desaguará a una obra de paso bajo el camino dando salida al agua a la zona de terraplén.
- Los vierteaguas que atraviesen los viales se hormigonarán previamente a su relleno.
- Para ayudar a la evacuación del agua desde el eje del camino se establecerán pendientes hacia las cunetas de un máximo de 2%.
- Se aplanará el camino con objeto de que no se produzcan retenciones de agua en el mismo.

- No se realizarán peraltes.
- La compactación del vial se considera fundamental en su realización.
- La pendiente máxima de los viales se adaptará al terreno.
- Para el desagüe longitudinal del agua procedente de la planta fotovoltaica y de sus márgenes, allí donde el camino discurre a nivel o en un desmonte, se dispondrá de una cuneta de forma triangular de tierra.
- Cuando las pendientes de los drenajes excedan del 5% se hormigonarán dichos tramos.

5.3.2 <u>Seguidores</u>

Se ha optado por anclar los seguidores al terreno mediante perforación o hincado al terreno, sin hacer huso de zapatas de hormigón. Esto incrementa las posibilidades de adaptación a las irregularidades del terreno. También se busca la facilidad de montaje y desmontaje de los paneles y de las labores de mantenimiento y/o sustitución de estos. Por otro lado, se minimiza la necesidad de desbroces y movimientos de tierra durante las obras y la posterior ocupación del terreno.

La Instalación Fotovoltaica se ha diseñado de tal forma que se minimicen las sombras entre las hileras de módulos, habiéndose tenido en cuenta la altura de las estructuras, la inclinación del terreno, las instalaciones circundantes a la instalación, el recinto de centros de transformación, etc. Basándose en cálculos de estudio de sombras para este emplazamiento y tipo de estructura en concreto se determina que la separación óptima en dirección Norte-Sur entre las hileras de módulos.

Cada fila del seguidor solar SF Utility-1500V de Soltec es movida por un motor DC de forma independiente, agilizándose la instalación y reduciendo el número de componentes mecánicos, lo que facilita el mantenimiento. Incorpora sistemas de backtracking (retroseguimiento para evitar sombras), y el "face to face" que consistente en enfrentar las filas para facilitar la limpieza desde el pasillo central. Otras características técnicas diferenciadoras son que no posee biela de accionamiento entre filas, la amplitud de rotación (±600 configurable), la gran adaptación a pendientes (dirección N-S 2%; E-W sin límites).

5.3.3 Zanjas

Los cables de baja tensión en corriente continua que unen las cajas de agrupamiento de strings con los centros de inversión y transformación, irán enterrados en zanjas.

El lecho de la zanja debe ser liso y estar libre de aristas vivas, cantos, piedras, etc. En el mismo se instalará un cable desnudo de cobre de 35 mm2 que se unirá a la puesta a tierra

de los centros de transformación y que discurrirá por todo el trazado de MT. Sobre la base se colocará una capa de arena de mina o de río lavada, limpia y suelta, exenta de sustancias orgánicas, arcilla o partículas terrosas, y el tamaño del grano estará comprendido entre 0,2 y 3 mm, de un espesor de 0,10 m, sobre la que se depositará el cable o cables a instalar. Encima irá otra capa de arena de idénticas características con un espesor mínimo de 0,15 m, y sobre ésta se instalará una protección mecánica a todo lo largo del trazado del cable, esta protección estará constituida por un tubo de plástico. Las dos capas de arena cubrirán la anchura total de la zanja teniendo en cuenta que entre los laterales y los cables se mantenga una distancia de unos 0,10 m. A continuación, se tenderá una capa de tierra de préstamo o seleccionada de 0,25 m de espesor, apisonada por medios manuales. Se cuidará que esta capa de tierra esté exenta de piedras o cascotes. Sobre esta capa de tierra, y a una distancia mínima del suelo de 0,10 m y 0,30 m de la parte superior del cable se colocará una cinta de señalización como advertencia de la presencia de cables eléctricos, las características, color, etc., de esta cinta serán las establecidas en la NI 29.00.01.

Los tipos de canalización y arquetas a ejecutar serán los siguientes:

- a) Zanjas: Se utilizan los siguientes tipos de zanja:
 - Zanja con 3 tubos de al menos 200 mm para los cruzamientos. En el fondo de la zanja y en toda la extensión se colocará una solera de limpieza de 0,05 m de espesor de hormigón HM-20, sobre la que se depositarán los tubos. A continuación, se colocará otra capa de hormigón HM-20 con un espesor de 0,20 m por encima de los tubos y envolviéndolos completamente.
 - Zanja sobre cama de arena para el trazado lineal
 - o Tipo 1, 2x o 1x800 mm de ancho x 1.000 mm de profundidad
 - o Tipo 2, 2x o 1x800 mm de ancho x 1.500 mm de profundidad
 - o Tipo 3, 2x o 1x400 mm de ancho x 1.000 mm de profundidad

El movimiento de tierras a realizar para la ejecución de las zanjas se refleja a continuación:

Tipo de Zanja	m3		
Zanjas de Baja tensión (Type 1, 400.0 mm x 1000.0 mm)	8.433		
Zanjas de Baja tensión (Type 2, 800.0 mm x 1000.0 mm)	511		
Zanjas de Media tensión (Type 1, 800.0 mm x 1500.0 mm)	1.846		
Zanjas de Media tensión (Type 2, 800.0 mm x 1000.0 mm)	1.043		
Zanjas de Media tensión (Type 3, 400.0 mm x 1000.0 mm)	703		
Zanjas de puesta a tierra	88		
Zanjas de servicios auxiliares	675		

6. EVALUACIÓN DEL MEDIO

6.1 CLIMATOLOGÍA

La instalación de la planta fotovoltaica "Navalaguilla I" se ubica a cercano al núcleo urbano de Bienvenida (Badajoz Bienvenida se encuentra a 612 m sobre el nivel del mar. El clima de Bienvenida se clasifica como cálido y templado. La lluvia en Bienvenida cae sobre todo en el invierno, con relativamente poca lluvia en el verano. Según Köppen y Geiger, este clima se clasifica como Csa. la temperatura media anual en Bienvenida se encuentra a 15.1 ° C | 59,2 ° F. La precipitación aquí es de aproximadamente 635 mm | 25.0 pulgadas por año. La menor cantidad de lluvia ocurre en julio el promedio de este mes es 4 mm | 0,2 pulgadas, en noviembre, la precipitación alcanza su pico, con un promedio de 84 mm | 3,3 pulgadas.

Las temperaturas son más altas en promedio en julio, alrededor de $25.0\,^{\circ}$ C | $77,0\,^{\circ}$ F. A $6,7\,^{\circ}$ C | $44.1\,^{\circ}$ F en promedio, enero es el mes más frío del año la variación en la precipitación entre los meses más secos y más húmedos es $80\,$ mm | 3 pulgadas. La variación de la temperatura anual ronda los $18,3\,^{\circ}$ C | $64,9\,^{\circ}$ F.

TABLA CLIMÁTICA // DATOS HISTÓRICOS DEL TIEMPO BIENVENIDA												
	enero	febrero	marzo	abril	Mayo	junio	julio	agosto	septiembre	octubre	noviembre	diciembre
Promedio Temperatura (°	6,7	8.2	10,5	13,1	16,4	21,2	25	24,7	21,4	dieciséis	10,8	7.3
C)												
Min. Temperatura (° C)	2.5	3.4	5.4	7.3	10,3	13,9	16.6	16,7	14,5	10,4	6.2	3.3
Max. Temperatura (° C)	10,9	13	15,6	18,9	22,6	28,6	33,4	32,7	28,4	21,6	15,4	11,3
Promedio Temperatura (°	44,1	46,8	50,9	55,6	61,5	70,2	77,0	76,5	70,5	60,8	51,4	45,1
F)												
Min. Temperatura (° F)	36,5	38,1	41,7	45,1	50,5	57,0	61,9	62,1	58,1	50,7	43.2	37,9
Max. Temperatura (° F)	51,6	55,4	60,1	66,0	72,7	83,5	92,1	90,9	83,1	70,9	59,7	52,3
Precipitación /	79	73	79	60	47	23	4	5	27	70	84	84
Precipitación (mm)												

En líneas generales el clima en Extremadura es mediterráneo continentalizado, excepto en las áreas más elevadas, que presentan clima de montaña. Sin embargo, sus rasgos climáticos se ven suavizados por la influencia marítima, pues tan solo 120kms. separan a Extremadura de la costa atlántica. La influencia atlántica, la situación meridional y la menor altitud propician unas temperaturas invernales moderadas, generalmente por encima de 6° C de media en enero y amplias zonas superiores a 8°C. No obstante, la continentalidad se manifiesta en su fuerte amplitud térmica, debida a las altas temperaturas estivales, que superan los 26°C. de media.

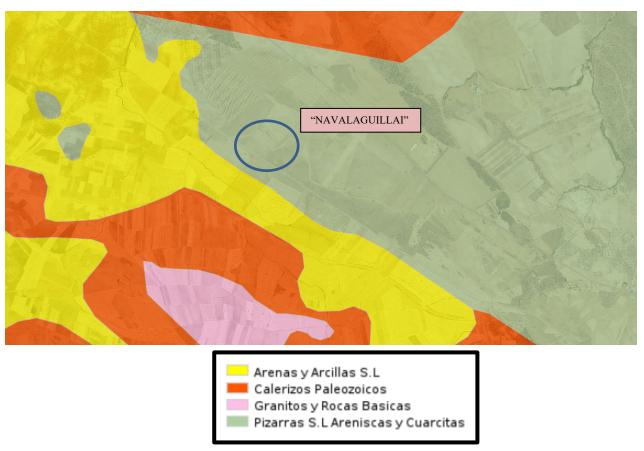
Las precipitaciones no son muy abundantes, pues no suelen superar los 600 mm., y amplias áreas están por debajo de los 400 mm. anuales. Las lluvias son invernales por efecto de la influencia atlántica, y la sequía estival es acusada. En las áreas montañosas, las precipitaciones superan los 700 mm., y las temperaturas son moderadas o cálidas en verano y frías en invierno.

La vegetación natural predominante está compuesta por bosques aclarados o dehesas de encinas y alcornoques y por formaciones de matorral de jara, retama, tomillo, romero, acebuche, enebro y otras especies. En las montañas, la vegetación está compuesta por bosques de encinas y alcornoques, quejigos, castaños, rebollos (robles) y pinos, y por matorral y prados, que se disponen de forma escalonada.

6.2 GEOLOGÍA

6.2.1 Situación Geológica de Extremadura

Para analizar la dinámica de la evolución y estructuración geológica de Extremadura utilizamos las divisiones tectonoestratigráficas en zonas del Macizo Ibérico establecidas por Lotze en 1945. En este contexto, las rocas extremeñas se incluyen en la Zona de OssaMorena (ZOM) y Zona Centro Ibérica (ZCI). El límite entre ambas es bastante controvertido y algunos investigadores lo sitúan en la Banda de Cizalla Badajoz-Córdoba (BCBC), sin embargo, investigaciones muy recientes demuestran que, al menos, las series neoproterozoicas y cámbricas situadas al norte de dicha banda son estratigráficamente bastante similares, además de mantener la misma vergencia.


Estos mismos trabajos indican la presencia de otra importante banda de deformación situada al norte de la (BCBC) que se ha denominado Banda de Campillo y que constituye el límite sur del Dominio de Obejo Valsequillo. Este dominio forma el margen norte de la ZOM y se caracteriza por incluir materiales neoproterozoicos y cámbricos tipo Ossa-Morena junto a materiales paleozoicos postcámbricos que incluyen series que participan de las características de la ZCI; en opinión de algunos investigadores este dominio tiene rango de Zona, aunque en esta introducción lo consideraremos como un dominio dentro de la ZOM.

La diferencia fundamental con el resto de la ZOM es la presencia de medios paleozoicos mucho más someros, lo que indicaría que este dominio actuó como un umbral durante casi todo el Paleozoico. Su límite norte, y por lo tanto el de la ZOM, coincide a "grosso modo" con el establecido originalmente por Lotze (Batolito de los Pedroches). La evolución y estructuración geológica de Extremadura es bastante compleja aunque, en general, mucho menor de lo que distintos modelos habían presupuesto. Un deficiente conocimiento de la cronoestratigrafía de las formaciones extremeñas ha dado lugar a una cartografía bastante

caótica, sobre todo en la ZOM, cuya consecuencia ha sido la utilización de un elevado conjunto de dominios que las recientes cartografías han demostrado prácticamente inexistentes (Apalategui et al., 2004).

DOMINIOS LITOLÓGICOS

Al norte de Extremadura se situaban los medios más distales y profundos donde se depositaron los materiales pertenecientes al grupo Río Huso. Estos materiales están poco desarrollados en Extremadura. En el Anticlinorio de Valdelacasa, sobre el grupo Domo Extremeño, se sitúa una sucesión progradante, consistente en depósitos de talud y turbiditas proximales que pasan, gradualmente, a medios marinos más someros que incluyen la transición a los depósitos cámbricos. En conjunto, este grupo también se puede dividir en tres tramos correlacionables con los del grupo Ibor.

El Tramo I, único representado en Extremadura, comienza con niveles olistostrómicos que dan paso a una sucesión de lutitas. Éstas engloban niveles de areniscas dolomíticas de granofino depositadas en una plataforma distal. Los niveles olistostrómicos se formaron por deslizamientos gravitacionales provocados por el colapso de las plataformas carbonatadas del grupo Ibor. Los carbonatos, al ser sedimentos de precipitación química, y en algunos casos, como hemos visto en el anterior apartado, auténticas bioconstrucciones de Cloudina, se encontraban semiconsolidados y situados posiblemente en una estrecha plataforma muy próximos al talud; la gran inestabilidad de la cuenca, ligada posiblemente al inicio de la última

fase de la Orogenia Cadomiense, pudo provocar el deslizamiento a lo largo del talud continental de los materiales carbonatados del grupo Ibor produciéndose, en dichas avalanchas, importantes pliegues de arrastre en un substrato poco litificado.

Un afloramiento excepcional en el que se pueden deducir estas observaciones es el del Olistostroma del Membrillar que se sitúa en la cola del Embalse del Cíjara y que incluye, entre la mezcla heterogénea de sus materiales, grandes bloques carbonatados, algunos de variasdecenas de metros, con abundantes fósiles de Cloudina hartmannae excepcionalmente preservados. Por encima de estos niveles olistostrómicos los niveles detrítiticos contienen el icnofósil Phycodes pedum, cronológicamente del Cámbrico Inferior, aunque estos tramos tienen escasa representación en la Comunidad Extremeña.

La Orogenia Cadomiense: una nueva configuración paleogeográfica. En la zona de Ossa-Morena se han distinguido distintos dominios durante la Orogenia Cadomiense. El importante magmatismo Cadomiense denota la presencia de un dominio orogénico que incluye restos de un arco isla. Así mismo, la presencia de abundantes andesitas en diversos sectores (Llerena), evidencian la evolución de un margen tipo arco isla a un margen andino. En este contexto la ZCI constituía una cuenca retroarco que fue emergiendo de sur a norte.

Posiblemente la primera fase cadomiense provocó el pleglamiento, metamorfismo y emersión de la sucesión de Montemolín, dada la presencia de cantos de cuarcitas negras en las diamictitas de la base de la serie de Nogales, así como en los conglomerados de los grupos Domo Extremeño e Ibor.

En la segunda y última fase se produce el desarrollo de importantes series fl yschoides sinorogénicas en una cuenca retroarco que tiene su máxima extensión en la ZCI. La emersión de los materiales de esta cuenca fue diferencial. Los medios más proximales y cercanos a los paleorrelieves de la sucesión de Montemolín emergen, en primer lugar, durante el Ediacárico, produciéndose una progradación de los medios de plataforma hacia el norte, de forma que durante la transición Ediacàrico-Cámbrico se llegan a desarrollar medios de plataforma mixta (grupo Ibor), que emergen al inicio del Cámbrico. Más al norte, y en el límite con las dos comunidades castellanas, se disponían los medios más profundos. En estas áreas las condiciones de plataforma se alcanzan durante el Cámbrico (grupo Río Huso), registrando la mayor potencia de sedimentos cámbricos que incluyen la transición gradual entre el Ediacárico y un Cámbrico que se extiende hasta la aparición de los primeros arqueociatos y trilobites.

6.2.2 Geología local

El municipio llamado BIENVENIDA está situado en el cuadrante suroeste de la Península Ibérica. A 450 Km al SO de Madrid, a 113 al N de Sevilla, a 87 al S de Mérida, a 107 de Badajoz y a 350 de Lisboa y con una altitud respecto al nivel del mar de 606m.

Dista 9 kilómetros de la autovía A-66, que comunica Asturias con Andalucía. Para llegar a Bienvenida hay que salir de dicha autovía por la salida 700 si se viene de Mérida, oporla704sisevienedeSevilla.

Otra carretera de acceso es la N-432, que va desde Badajoz a Granada. Hay que dejar dicha carretera en el kilómetro 96, en el cruce de Usagre. Los aeropuertos más cercanos son el de Sevilla y el de Talavera la Real, junto a Badajoz. Hay una estación de ferrocarril, pero en la actualidad está desactivada y no se puede usar.

La zona donde se localizan las instalaciones fotovoltaicas, se encuentran ubicadas en la zona Este del núcleo urbano de Bienvenida entre la N-432 y la vía de FFCC Mérida-Sevilla. El terreno donde se proyecta la planta, son principalmente de cultivo, donde predomina el suelo pizarroso

En la ZOM aparece en diversos afloramientos, que generalmente se encuentran limitados por fallas, por lo que su reconstrucción plantea bastantes problemas. Los afloramientos más importantes se localizan en Los Santos de Maimona, Matachel, El Casar, Campillo de Llerena, Berlanga, Bienvenida y Casas de Reina. Series del Carbonífero inferior La tonica general de las secuencias, a excepción de las poco conocidas series de la Formación Terena, es la presencia de rocas volcánicas y materiales sedimentarios interestratificados que generalmente suelen contener calizas bastante fosiliferas. Las series más completas y mejor estudiadas se localizan en la Sierra de San Pedro (Soldevilla, 1992; Hahn y Rabano, 1996), y en los Santos de Maimona. Estas sucesiones, aunque se encuentran en la ZCI y ZOM respectivamente, presentan una evolución muy similar, lo que parece indicar que la diferenciación existente en ambas zonas prácticamente había desaparecido en el Carbonífero.

6.3 EDAFOLOGÍA

El carácter del suelo de esta zona está definido predominantemente por los factores geológicos locales.

Utilizando el sistema de Clasificación de Suelos del E.S.D.A. (Soil Taxonomy):

 ORDEN
 SUBORDEN
 GRAN GRUPO

 Entisoles
 Orthens
 Xerothent

 Inceptisoles
 Ochrepts
 Xerochrepts

 Regosoles
 Torripsamments

Clasificación de Suelos

según el mapa de cultivos y aprovechamientos (MAPA, 1982) predominan los suelos del orden Inceptisol. En general son suelos ácidos (pH 5,5 a 6,5), carentes de carbonatos, suelos de bajo potencial agrícola y su principal aprovechamiento es para dehesas.

También aparecen pequeñas áreas con alfisoles y entisoles asociados a los anteriores, en la zona central, que son suelos más profundos, que se dedican a labores de secano. Sobre rañas pliocénicas aparecen suelos con textura superficial arenosa o arcillosa, que corregidos dan buenas tierras de cultivo. En los regadíos de Valdesalor aparecen un conjunto de suelos transformados por el riego.

Los inceptisoles son también suelos poco evolucionados, más que los entisoles pero menos que la mayoría de los otros órdenes. Se pueden definir como suelos que presentan baja (o incluso media) evolución. Son los predominantes en la poligonal definida para la central fotoeléctrica.

6.4 HIDROLOGÍA E HIDROGEOLOGÍA

6.4.1 Hidrología superficial y subterranea

El municipio de Bienvenida se encuadra en la Mancomunidad del Tentudia. La red hidrográfica queda distribuida en dos grandes cuencas: la cuenca del Guadiana constituida por la red fluvial del río Bodión y la cuenca del Guadalquivir formada por la red de aguas de los ríos Viar y Vendoval.

La cuenca del Guadiana ocupa una superficie de extensión menor que la cuenca hidrográfica del Guadalquivir. Toda la red fluvial de esta cuenca se expande por el Noroeste dentro del territorio haciendo un recorrido de Sur a Norte a través de su colector principal el

río Bodión. El eje de este río principal constituye el límite físico del municipio por su margen Noroeste. El río Bodión nace en la Sierra de Agua Fría a 867m de altitud y dentro del municipio su afluente más significativo es el arroyo Bodión. En general, el río recorre el municipio encajonado entre cerros hasta a unirse al río Ardila más al Noroeste que juntos recorren las localidades del extremo Suroeste de la provincia hasta desembocar en el Guadiana.

La cuenca hidrográfica del Guadalquivir es más extensa y ocupa toda la superficie restante que no ocupa la cuenca del Guadiana en el término. La red fluvial que compone esta gran cuenca nace principalmente entre las sierras de Aguafría y de Machado extendiéndose de Oeste a Sureste y teniendo como ríos principales el Viar y el Vendoval. La red fluvial discurre en dirección Noroeste-Sureste encajonada entre los relieves de serranía al Oeste.

El río Viar cuyo nacimiento tiene lugar en el puerto Cañada dentro de la Sierra de Tentudía, discurre por las vertientes en dirección Norte para luego dirigirse al Este y atravesar nuevamente el municipio recibiendo las aguas por su margen derecho de su principal tributario el río Vendoval. Algunos de sus afluentes son: el arroyo de los almendros, de la zarza, del rosalito....

La longitud total del río es de 124Km, atraviesa todas las estribaciones de Sierra Morena (el Parque Natural de la sierra Norte Sevillana) para desembocar en el Guadalquivir. El eje del río Vendoval constituye parte del límite del Término Municipal por su extremo Norte y discurre en dirección Este hasta unirse al río Viar antes de llegar al embalse del Pintado. Algunos de sus afluentes son: el arroyo del Peral, la rivera de Santa María, el arroyo Nava....

Además de estos cursos fluviales encontramos otros de menor entidad son los arroyos y riveras de los cuales destacamos el arroyo Culebrín y la rivera de Cala. El arroyo Culebrín de gran longitud recorre gran parte del Término, con una red muy ramificada, sus aguas son remansadas al llegar a los Llanos del Corcho formando el embalse del Culebrín. La rivera de Cala lleva un caudal considerable al ser la receptora de las aguas de los numerosos arroyos que nacen en el cerro del Castillo a 1079m de altitud.

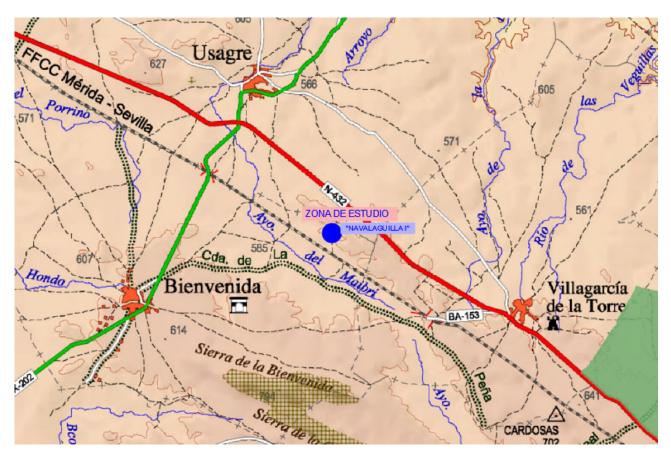


Figura 2. Red hidrográfica de la zona de estudio. En azul, poligonal externa de la planta solar.

6.5 FLORA Y VEGETACIÓN

6.5.1 Vegetación potencial

Según Salvador Rivas-Martínez (1987) todo el territorio español se halla dentro del reino de flora y vegetación Holártico. La región central y sur de la Península Ibérica pertenece a la región biogeográfica Mediterránea. Atendiendo a la cartografía del Mapa de Series de Vegetación de la Península Ibérica y Baleares de Rivas Martínez (1987), la zona de estudio pertenece al piso H o piso mesomediterráneo, el de mayor extensión territorial de toda la Península Ibérica. Más concretamente, el área de actuación pertenece a una única serie de vegetación, codificada como 24c: Serie mesomediterránea luso-extremadurense silicícola de la encina (Quercus ilex). Pyro bourgaeanae-Querceto rotundifoliae sigmetum.

La serie mesomediterránea luso-extremadurense silicícola de la encina de hojas redondeadas o carrasca (24c) corresponde en su etapa madura a un bosque esclerófilo en el que con frecuencia existe el piruétano o peral silvestre (Pyrus bourgaeana), así como en ciertas navas, y umbrías alcornoques (Quercus suber) o quejigos (Quercus faginea).

El uso más generalizado de estos territorios, donde predominan los suelos silíceos pobres, es el ganadero; por ello los bosques primitivos han sido tradicionalmente adehesados a base de eliminar un buen número de árboles y prácticamente todos los arbustos del sotobosque.

Paralelamente, un incremento y manejo adecuado del ganado, sobre todo del lanar, ha ido favoreciendo el desarrollo de ciertas especies vivaces y anuales (Poa bulbosa, Trifolium glomeratum, Trifolium subterraneum, Bellis annua, Bellis perennis, Erodium botrys, etcétera), que con el tiempo conforman en los suelos sin hidromorfía temporal asegurada un tipo de pastizales con aspecto de céspedes tupidos de gran valor ganadero, que se denominan majadales (Poetalia bulbosae), cuya especie directriz, la gramínea hemicriptofítica Poa bulbosa, tiene la virtud de producir biomasa tras las primeras lluvias importantes del otoño y de resistir muy bien el pisoteo y el intenso pastoreo.

En la tabla que se muestra a continuación se representan las etapas de regresión y bioindicadores de la serie:

Etapas de regresión y bioindicadores de serie 24c: Serie mesomediterránea luso- extremadurense silicícola de la encina					
Árbol dominante: Quercus ilex					
Nombre fitosociológico: Pyro bourgaeanae-Querceto rotundifoliae sigmetum					
I.	Bosque	Quercus ilex Pyrus bourgaeana Paeonia broteroi Doronicum plantagineum			
II.	Matorral denso	Phillyrea angustifolia Quercus coccifera Cytisus multiflorus Retama sphaerocarpa			
III.	Matorral degradado	Cistus Iadanifer Genista hirsuta Lavandula sampaiana Halimium viscosum			
IV.	Pastizales	Agrostis castellana Psilurus incurvus Poa bulbosa			

6.5.2 Vegetación real

La flora es el conjunto de plantas que pueblan un área determinada. Su estudio permite determinar parámetros como la riqueza, singularidad, estado de conservación-degradación de los terrenos o alteraciones sufridas en la cubierta vegetal y causas, siendo además la base para el estudio de la vegetación.

La vegetación analiza la forma en que se agrupa la flora y, por tanto, el conjunto de agrupaciones florísticas que pueden ser más o menos estables y constantes. Estas agrupaciones vendrán determinadas por factores climáticos, edáficos, simbióticos, parasíticos e indudablemente aleatorios.

6.5.3 Flora

A continuación, se incluye una relación del inventario florístico de las plantas vasculares con cita en la cuadrícula UTM de 10 x 10 km 29SQC44/29SQC54 que incluye todo el ámbito de estudio. Esta información se ha obtenido a partir de los datos publicados en el Proyecto Anthos (MARM y CSIC, http://www.anthos.es/).

- Allium nigrum
- Barlia robertiana
- Carduncellus cuatrecasasii
- Centaurea cordubensis
- Cephalanthera longifolia
- Colutea hispanica
- Coronilla scorpioides
- Echium boissieri
- Groenlandia densa
- Gynandriris sisyrinchium
- Hippocrepis ciliata
- Klasea pinnatifida
- Lavatera triloba
- Linaria micrantha
- Lomelosia stellata
- Marsilea batardae
- Neotinea maculata
- Ononis speciosa
- Ononis viscosa subsp. crotalarioides
- Ophrys fusca
- Ophrys lutea
- Ophrys scolopax
- Ophrys speculum
- Ophrys tenthredinifera
- Orchis collina
- Orchis conica
- Orchis italica
- Orchis laxiflora

- Orchis morio
- Sideritis paulii
- Thymus mastichina
- Zannichellia peltata

El pastizal es la unidad de vegetación con mayor superficie en la zona de estudio. La vegetación es prácticamente herbazal y rodeado de tierras agrícolas y prados artificiales.

Cabe destacar, que en la Sierra de Bienvenida podemos observar diferentes especies de orquídeas, siendo las más representativas la citadas a continuación:

- Orquídea mariposa (Orchis papilionácea)
- Orquídea abejera (Ophrys apifera y Ophry speculum)
- Serapias (Serapia lingua y Serapia cordigera)
- Orquídea amarilla (Ophrys lutea)

A continuación, se detalla imagen de la zona de estudio la cual se puede observar la vegetación predominante.

6.6 FAUNA

El área de estudio para las aves se ha establecido en un área de 10 km en torno a la poligonal externa de la central fotovoltaica. Para el resto de grupos (anfibios, reptiles y mamíferos no quirópteros) se consideran los límites de la cuadrícula UTM de 10 x 10 km 29SQC44/29SQC54 de lado en la que se encuentran la planta fotovoltaica, junto con las cuadrículas adyacentes al oeste y al sur, debido a la cercanía a las infraestructuras previstas.

En las zonas de arroyos se puede encontrar vegetación de ribera, aunque son poco significativa.

Una vez delimitada el área de estudio, se ha procedido a determinar la fauna presente en la zona. Para ello se han tenido en cuenta principalmente los datos procedentes de la Base datos de Datos del Inventario Español de Especies Terrestres (IEET) (http://www.magrama.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventarioespecies-terrestres/inventario-nacional-de-biodiversidad/bdn-ieet-default.aspx. La información obtenida de esta fuente se ha filtrado posteriormente en función del hábitat disponible y de las preferencias de hábitat de las distintas especies en diversos aspectos (formaciones vegetales, grado de antropización del medio, altitud, etc.), de forma, por ejemplo, que se han eliminado todas las especies de peces continentales, al no haber cauces de aguas permanentes en la zona de estudio.

Hay que señalar que, en el caso de las aves, únicamente se incluyen aquellas especies que nidifican en la zona de estudio. Las especies que aparecen en otros momentos de su ciclo vital (vuelos de campeo, pasos migratorios, invernada, etc.) se tendrán en cuenta, en su caso, en el Estudio de Impacto Ambiental.

A continuación, se presenta una tabla con las especies de vertebrados presentes en la mencionada zona de estudio. Se trata de 129 especies (3 anfibios, 3 reptiles, 71 aves y 20 mamíferos). Para cada una de ellas se ofrece la siguiente información:

- Nombre científico.
- Legislación Nacional: CEEA. Categoría con la que la especie es recogida en el Real Decreto 139/2011, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. RPE son las especies recogidas en ese listado, mientras que E representa a los taxones considerados "en peligro de extinción" y V a los "vulnerables" dentro del Catálogo de Especies Amenazadas.
- Legislación Autonómica: CREA. Categoría con la que la especie es recogida en el DECRETO 37/2001, de 6 de marzo, por el que se regula el Catálogo Regional de Especies Amenazadas de Extremadura. Las categorías son las mismas que las del CNEA, a las que se añade la S "sensible a la alteración de su hábitat".
- Legislación Internacional:
 - Directiva Aves: Anexo en el que figura la especie en la Directiva 79/409/CE, referente a la conservación de las aves silvestres, y modificaciones posteriores (Directiva 91/244/CEE y otras). I son las especies incluidas en el anexo 1, "especies que deben ser objeto de medidas de conservación de su hábitat". La categoría II representa a las especies incluidas en el anexo 2, "especies cazables", y III a las incluidas en el anexo 3, "especies comercializables".

- Directiva Hábitat: Anexo en el que figura la especie en la Directiva Hábitat, aprobada por la CE el 21 de mayo de 1992. La categoría II representa a los taxones incluidos en el anexo 2, "especies que han de ser objeto de medidas especiales para su protección". IV representa a los taxones del anexo 4, "especies estrictamente protegidas", y V a las especies del anexo 5, "especies pescables y cazables".
- Estatus poblacional en España: Libro Rojo (LR). Categoría con la que se ha catalogado a la especie en los últimos Libros Rojos correspondientes a cada uno de los grupos (Peces: Doadrio, 2001; Anfibios y reptiles: Pleguezuelos, Márquez y Lizana, 2002; Aves: Martí & Del Moral, 2003; Madroño & al., 2004 y Mamíferos: Palomo & Gisbert, 2002). Las categorías consideradas son las siguientes: EX (Extinto), CR (En peligro crítico), EN (En peligro), VU (Vulnerable), NT (Casi amenazado), LC (Preocupación menor), DD (Datos insuficientes), NE (No evaluado).

6.6.1 Anfibios

BD_IEET						
Grupo	Nombre	Genero	Especie			
Anfibios	Pelobates cultripes	Pelobates	cultripes			
Anfibios	Pelophylax perezi	Pelophylax	perezi			
Anfibios	Rana perezi	Rana	perezi			

6.6.2 Reptiles

	BD_IEET						
Grupo	Nombre	Genero	Especie				
Reptiles	Mauremys leprosa	Mauremys	leprosa				
Reptiles	Psammodromus algirus	Psammodromus	Algirus				
Reptiles	Rhinechis scalaris	Rhinechis	scalaris				

6.6.3 Aves

	BD_IEET						
Grupo	Nombre	Genero	Especie				
Aves	Acrocephalus scirpaceus	Acrocephalus	scirpaceus				
Aves	Alauda arvensis	Alauda	arvensis				
Aves	Alectoris rufa	Alectoris	rufa				
Aves	Anas platyrhynchos	Anas	platyrhynchos				
Aves	Apus apus	Apus	apus				
Aves	Athene noctua	Athene	noctua				
Aves	Burhinus oedicnemus	Burhinus	oedicnemus				

	BD_IEET							
Grupo	Nombre	Genero	Especie					
Aves	Buteo buteo	Buteo	buteo					
Aves	Caprimulgus ruficollis	Caprimulgus	ruficollis					
Aves	Carduelis cannabina	Carduelis	cannabina					
Aves	Carduelis carduelis	Carduelis	carduelis					
Aves	Carduelis chloris	Carduelis	chloris					
Aves	Cecropis daurica	Cecropis	daurica					
Aves	Cercotrichas galactotes	Cercotrichas	galactotes					
Aves	Certhia brachydactyla	Certhia	brachydactyla					
Aves	Charadrius dubius	Charadrius	dubius					
Aves	Ciconia ciconia	Ciconia	ciconia					
Aves	Circus cyaneus	Circus	cyaneus					
Aves	Circus pygargus	Circus	pygargus					
Aves	Cisticola juncidis	Cisticola	juncidis					
Aves	Columba domestica	Columba	domestica					
Aves	Columba livia/domestica	Columba	livia/domestica					
Aves	Columba palumbus	Columba	palumbus					
Aves	Coracias garrulus	Coracias	garrulus					
Aves	Corvus corax	Corvus	corax					
Aves	Corvus monedula	Corvus	monedula					
Aves	Coturnix coturnix	Coturnix	coturnix					
Aves	Cuculus canorus	Cuculus	canorus					
Aves	Cyanopica cyana	Cyanopica	cyana					
Aves	Delichon urbicum	Delichon	urbicum					
Aves	Emberiza calandra	Emberiza	calandra					
Aves	Falco naumanni	Falco	naumanni					
Aves	Falco tinnunculus	Falco	tinnunculus					
Aves	Fringilla coelebs	Fringilla	coelebs					
Aves	Galerida cristata	Galerida	cristata					
Aves	Gallinula chloropus	Gallinula	chloropus					
Aves	Garrulus glandarius	Garrulus	glandarius					
Aves	Hieraaetus pennatus	Hieraaetus	pennatus					
Aves	Hippolais polyglotta	Hippolais	polyglotta					
Aves	Hirundo rustica	Hirundo	rustica					
Aves	Lanius excubitor	Lanius	excubitor					
Aves	Lanius senator	Lanius	senator					
Aves	Lullula arborea	Lullula	arborea					
Aves	Luscinia megarhynchos	Luscinia	megarhynchos					
Aves	Melanocorypha calandra	Melanocorypha	calandra					
Aves	Merops apiaster	Merops	apiaster					
Aves	Milvus migrans	Milvus	migrans					

	BD_IEET						
Grupo	Nombre	Genero	Especie				
Aves	Milvus milvus	Milvus	milvus				
Aves	Oenanthe hispanica	Oenanthe	hispanica				
Aves	Oriolus oriolus	Oriolus	oriolus				
Aves	Otis tarda	Otis	tarda				
Aves	Parus caeruleus	Parus	caeruleus				
Aves	Parus major	Parus	major				
Aves	Passer domesticus	Passer	domesticus				
Aves	Passer montanus	Passer	montanus				
Aves	Pterocles alchata	Pterocles	alchata				
Aves	Pterocles orientalis	Pterocles	orientalis				
Aves	Rallus aquaticus	Rallus	aquaticus				
Aves	Saxicola torquatus	Saxicola	torquatus				
Aves	Serinus serinus	Serinus	serinus				
Aves	Sitta europaea	Sitta	europaea				
Aves	Streptopelia turtur	Streptopelia	turtur				
Aves	Strix aluco	Strix	aluco				
Aves	Sturnus unicolor	Sturnus	unicolor				
Aves	Sylvia atricapilla	Sylvia	atricapilla				
Aves	Sylvia melanocephala	Sylvia	melanocephala				
Aves	Tetrax tetrax	Tetrax	tetrax				
Aves	Turdus merula	Turdus	merula				
Aves	Tyto alba	Tyto	alba				
Aves	Tyto alba	Tyto	alba				
Aves	Upupa epops	Upupa	epops				

6.6.4 <u>Mamiferos</u>

BD_IEET							
Grupo	Nombre	Genero	Especie				
Mamíferos	Crocidura russula	Crocidura	russula				
Mamíferos	Erinaceus europaeus	Erinaceus	europaeus				
Mamíferos	Herpestes ichneumon	Herpestes	ichneumon				
Mamíferos	Lepus granatensis	Lepus	granatensis				
Mamíferos	Lutra lutra	Lutra	lutra				
Mamíferos	Microtus duodecimcostatus	Microtus	duodecimcostatus				
Mamíferos	Miniopterus schreibersii	Miniopterus	schreibersii				
Mamíferos	Mus musculus	Mus	musculus				

BD_IEET							
Grupo	Nombre	Genero	Especie				
Mamíferos	Mus spretus	Mus	spretus				
Mamíferos	Myotis myotis	Myotis	myotis				
Mamíferos	Nyctalus leisleri	Nyctalus	leisleri				
Mamíferos	Oryctolagus cuniculus	Oryctolagus	cuniculus				
Mamíferos	Pipistrellus pipistrellus	Pipistrellus	pipistrellus				
Mamíferos	Pipistrellus pygmaeus	Pipistrellus	pygmaeus				
Mamíferos	Rattus norvegicus	Rattus	norvegicus				
Mamíferos	Rhinolophus ferrumequinum	Rhinolophus	ferrumequinum				
Mamíferos	Rhinolophus mehelyi	Rhinolophus	mehelyi				
Mamíferos	Sus scrofa	Sus	scrofa				
Mamíferos	Tadarida teniotis	Tadarida	teniotis				
Mamíferos	Vulpes vulpes	Vulpes	vulpes				

6.7 ÁREAS DE INTERÉS NATURAL

El emplazamiento propuesto para la central fotovoltaica no incluye terrenos pertenecientes a ningún Espacio de la Red de Áreas Protegidas de Extremadura, tal como se define en la Ley 8/1998, de 26 de junio, de Conservación de la Naturaleza y Espacios Naturales de Extremadura, modificada por la Ley 9/2006, de 23 de diciembre.

En cuanto a las zonas sensibles desde el punto de vista ambiental que aparecen en el entorno cercano a la zona de estudio, se detallan a continuación.

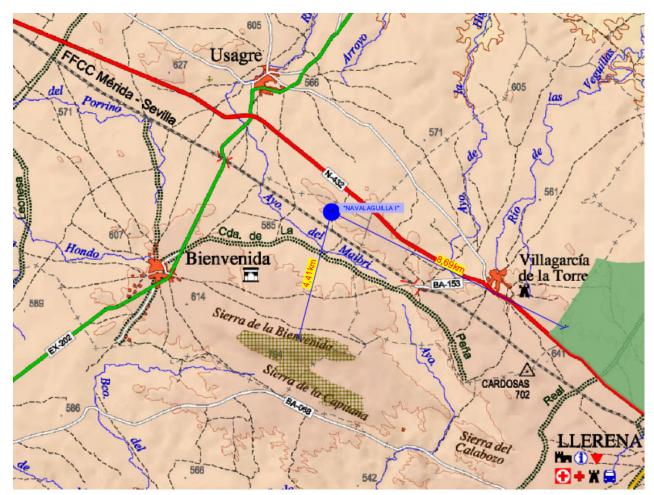


Figura 3. Espacios naturales protegidos en el entorno del emplazamiento.

6.7.1 Paisaje

La zona de estudio objeto del presente estudio se ajusta a las características de la asociación de tipos de paisaje denominada "Penillanuras suroccidentales adehesadas sobre granitos y esquistos" del Atlas de los Paisajes de España. El proyecto se desarrolla en concreto sobre el paisaje denominado "Penillanura granios de Extremadura".

Las penillanuras son uno de los tipos de paisaje con mayor extensión en la península Ibérica y predominante en Extremadura, región en que aparecen sus más típicas representaciones y desde la que penetra a Castilla-La Mancha (zonas occidentales de Toledo y Ciudad Real) o a Andalucía (Sierra Norte de Sevilla y Los Pedroches).

Los rasgos físicos que identifican a este tipo de paisaje son las grandes extensiones de relieves casi llanos o suavemente ondulados que se han formado sobre los viejos materiales arrasados del zócalo ibérico, rocas metamórficas muy antiguas o granitos y gneises. Este sustrato da lugar a suelos de media y baja calidad, de colores pardo claro y baja capacidad de retención de humedad. Sólo la presencia de rocas más duras (cuarcitas y afloramientos graníticos) y la incisión de los ríos accidentan el terreno, dando lugar a la aparición de cerros, pequeñas sierras, berrocales o encajamientos de pequeños tramos de los cursos fluviales, que introducen variedad en el paisaje.

Sobre este sustrato físico se instala una cubierta vegetal dominada por las dehesas. En algunos sectores de la penillanura, por lo general sobre bases esquistosas y formas más planas, esta dehesa se ve sustituida por grandes pastizales desarbolados. En todo caso, estas formaciones aparecen siempre en extensas unidades de explotación latifundistas, que confieren al paisaje una clara identidad ganadera extensiva.

Estas dehesas y pastizales han sido tradicionalmente aprovechados por grandes rebaños de ovejas, de raza mayoritariamente merina. El ganado vacuno de carne, históricamente menos importante, ha pasado sin embargo a ocupar en los últimos tiempos el primer puesto en muchas zonas, con la vaca retinta propia de estas tierras como protagonista, aunque con cruces con razas cárnicas exóticas de la Europa húmeda. El cerdo de raza ibérica también se encuentra en clara expansión en las dehesas, en las que además de los pastos aprovecha el matorral, los rastrojos de las tierras de siembra y, sobre todo, la bellota de encinas y alcornoques, fundamental en la última fase de engorde. Por último, algunos latifundios se encuentran especializados en la cría del toro bravo de lidia.

El cromatismo de estos territorios está condicionado por la climatología, con una larga e intensa sequía veraniega y un invierno relativamente suave (lo que les diferencia de las penillanuras del norte de Castilla). Además, la baja capacidad de retención de agua de los suelos predominantes contribuye a acelerar el agostamiento estival de la vegetación. Esos hechos determinan la fenología de los pastos, que presentan un aspecto verde en la época invernal y ocre o amarillento en la época veraniega, con periodos de transición entre ambos estados muy breves.

Figura 4. A la izquierda y derecha, penillanura en las inmediaciones del emplazamiento de la central.

7. ANÁLISIS AMBIENTAL DEL PROYECTO

A continuación, se identifican las alteraciones que se producen como consecuencia de las diversas actuaciones que tienen lugar durante las distintas etapas del proyecto sobre los componentes o factores del medio. Esta identificación se realiza en términos muy genéricos, en forma de matriz. Durante la realización del Estudio de Impacto Ambiental, una vez finalizado el inventario, se caracterizarán y valorarán dichas alteraciones, y se plasmará dicha valoración en una escala de niveles de impacto (compatible, moderado, severo y crítico).

Esta fase del estudio de impacto ambiental consiste en predecir la naturaleza de las interacciones proyecto-entorno, es decir, las relaciones causa-efecto entre las acciones del proyecto (causa primaria de impacto) y los factores del medio (sobre los que se produce el efecto).

Las actuaciones destacables de cara a una predicción de los efectos que puede tener el proyecto sobre el medio ambiente y que servirán en fases posteriores para la identificación y evaluación de los impactos, se señalan en los siguientes apartados.

En este apartado no se pretende valorar los impactos que se producirán, sino clasificarlos. De forma que se esclarezcan qué clase de acciones del proyecto van a generar algún tipo de impacto sobre el medioambiente de la zona, ya sea sobre el medio físico como sobre el medio socio-demográfico y económico.

Por tanto, el principal objetivo de este apartado es describir los impactos que se producirán en los distintos componentes como consecuencia de la construcción de la planta fotovoltaica.

Algunos de los impactos que presumiblemente se van a producir son fácilmente cuantificables, sin embargo, otras alteraciones son más difíciles de evaluar, a priori, por la

imprevisión de respuestas de determinados elementos del medio físico y sociodemográfico ante las intervenciones exteriores, o ante la dificultad de precisar no sólo la magnitud, sino también el suceso de la alteración. De esta manera, se ha procedido a evaluar cualitativamente tanto las intervenciones no cuantificables, como aquéllas que, aunque es probable que aparezcan como consecuencia de la realización del proyecto, no se tiene la total certeza de su ocurrencia.

Posteriormente se determinará la clasificación de los impactos ambientales, consecuencia del presente proyecto, los cuales se deducen de las interacciones expuestas en la matriz.

7.1 ACTUACIONES DEL PROYECTO SUSCEPTIBLES DE CAUSAR IMPACTO

7.1.1 Fase de construcción

Es la fase en la que una vez terminados los proyectos técnicos y declarado el impacto ambiental, se procede al montaje de la planta. Engloba las operaciones propias de la construcción de la misma:

- Replanteo, balizamiento y señalización del terreno en las zonas de emplazamiento y áreas afectadas.
- o <u>Desbroce</u> de la vegetación
- Movimiento de tierras: excavación, construcción y adecuación de viales y accesos, explanación de terrenos y apertura de zanjas para el cableado, compensando los volúmenes con los materiales excavados utilizándolos donde sean necesarios. La eliminación de los materiales no útiles sobrantes tales como tierra vegetal y otros materiales de excavación sin utilidad para rellenos, así como la extracción de los volúmenes requeridos.
- Instalaciones provisionales: Para el movimiento de maquinaria se aprovecharán los caminos existentes y se instalarán casetas de obra provisionales.
- <u>Transporte</u>: movimiento de la maquinaria necesaria asociada a las necesidades de obra, excavaciones, vertidos, transporte propio de material y su distribución.
- o Construcción: Montaje de las estructuras (seguidores solares y vallado).
- Relleno de zanjas y reposición de pavimento.
- o <u>Eliminación</u> de materiales y rehabilitación de daños
- <u>Emisiones contaminantes</u>: asociadas a las actividades anteriores; comprende un conjunto diverso de emisiones de las que se destacan:
 - Emisiones de ruido: derivadas del funcionamiento de la maquinaria y las actividades de construcción.

 Emisiones de polvo: principalmente de las excavaciones y secundariamente de los transportes por caminos de tierra.

7.1.2 Fase de funcionamiento

Esta fase abarca el período de tiempo que transcurre desde la puesta en marcha de la planta fotovoltaica, hasta el abandono o clausura de esta.

A continuación, se definen las variables implicadas en la fase de funcionamiento:

- Nivel de ocupación: espacio físico que pasará a ser ocupado por la planta fotovoltaica y todos sus componentes (estructuras de las células fotovoltaicas, viales, vallado)
- <u>Infraestructuras</u>: incluye todo aquello de lo que se compone la planta, cimentaciones, estructuras, tendidos eléctricos.....
- Mantenimiento: presencia ocasional de maquinaria y mano de obra, desbroces puntuales y generación de residuos, operadores in situ de revisión y/o averías de la instalación.
- Operatividad: generación, distribución y transporte de la energía eléctrica a través de los conductores hasta los inversores, transformadores y evacuación de la energía a través de línea eléctrica de alta tensión.
- o Emisiones contaminantes: asociadas a las actividades anteriores;
 - Emisiones de ruido: emitidos por generación, distribución y transporte de la energía eléctrica.
 - Emisiones de polvo: posiblemente emitidos por el transporte de vehículos de los operadores de mantenimiento.
 - Emisiones de ondas electromagnéticas: emitidos por el transporte y distribución de la electricidad a través de la línea.

7.1.3 <u>Fase de clausura</u>

Durante la fase de clausura se procederá al desmantelamiento de las instalaciones (seguidores, cimentaciones, vallado, viales), por lo que se repetirán gran parte de las acciones descritas en la fase de construcción: movimiento de tierras, desmontaje de estructuras, movimiento y uso de maquinaria, presencia de mano de obra, etc., por lo que esta fase no ha sido analizada en el apartado de caracterización y valoración de impactos.

En todo caso, finalizaría con un proyecto de restauración ambiental, que tiene por objeto que el entorno afectado recupere las condiciones iniciales previas a la fase de construcción.

7.2 <u>ELEMENTOS DEL MEDIO SUSCEPTIBLES DE SER AFECTADOS POR EL PROYECTO</u>

A continuación, se aporta una relación completa de elementos del medio, que se utilizará lógicamente con el fin de reflejar el conjunto de variables ambientales previamente definidoras de la realidad territorial. Una vez enumerada la relación, se va a proceder a desarrollar el análisis del conjunto de elementos ambientales que, en principio se consideran sustancialmente alterados por las acciones del proyecto.

Se analizarán aquellos que se supongan más representativos de cara a la posterior evaluación de los impactos netamente influenciados respecto al diseño y ejecución del proyecto.

Los elementos ambientales de nuevo se asocian en los dos grupos siguientes:

- Medio físico
- Medio socio-demográfico

7.2.1 Medio físico

Atmósfera

Los cambios en la calidad del aire se producen en la fase de construcción del proyecto. En este periodo se incrementará notablemente la emisión de partículas de polvo debido principalmente al movimiento de tierras, excavaciones para el montaje de las estructuras (seguidores solares y vallado).

Este efecto se verá reducido debido al relieve de la zona, sensiblemente plano y que no ofrece obstáculo a la libre circulación del aire que arrastraría la posible contaminación atmosférica.

Respecto a las alteraciones en el nivel de ruidos se ocasionarán igualmente en la fase de construcción del proyecto. Durante esta fase aumentarán los niveles de ruido en las áreas donde se están realizando dichos trabajos, principalmente por las máquinas de movimiento de tierras, excavaciones y por la maquinaria dedicada al transporte de las estructuras.

Al finalizar la fase de construcción, es decir, cuando se encuentre en la fase de funcionamiento, no está previsto que el entorno se vea afectado por la emisión de partículas ni de ruidos.

Suelos

Las alteraciones del suelo tendrán lugar igualmente durante la fase de construcción, y éstas serán causadas primordialmente, por los movimientos de tierras y por las excavaciones.

No se ha detectado la existencia de deslizamientos recientes, ni riesgos de inestabilidad donde va a tener lugar la construcción, por lo tanto, se consideran muy bajos o nulos.

En cuanto a la erosionabilidad de los materiales que se encuentran en la zona no son muy susceptibles de erosión.

Aguas

La implantación de la planta fotovoltaica no tendrá repercusiones sobre aguas subterráneas, tampoco se espera que se produzcan contaminación de las aguas del "Arroyo de la Vera" en la fase construcción.

Vegetación

La alteración que se originará en la vegetación será en la fase de construcción cuando se realicen las excavaciones pertinentes para la colocación de las estructuras y vallados.

Fauna

Las alteraciones más importantes se producirán en la fase de funcionamiento debido a dos causas principales: la colisión y la electrocución.

También puede producirse alguna alteración de biotopos en la fase de construcción en aquellos puntos donde se encuentre situada la maquinaria dedicada a las labores de excavación y movimiento de tierras.

Paisaje

La construcción de la planta fotovoltaica sobre todo supone una alteración en la calidad visual del paisaje, debido a la presencia de elementos nuevos en la zona.

7.2.2 Medio socio-demográfico

Usos del suelo

Los términos donde se ubicará la planta tendrán una alteración considerable en cuanto a ocupación de suelo productivo.

Sistema demográfico

Las principales alteraciones que tienen lugar sobre la población serán únicamente en la fase de construcción debido a la demanda de mano de obra que se producirá. Esta alteración es transitoria y no provocará efectos derivados.

Sistema económico

Con la construcción del proyecto no se verán influenciados negativamente ninguno de los tres sectores económicos.

Sistema sociocultural

No se producirán alteraciones ni en la fase de construcción ni en la fase de funcionamiento, puesto que la ubicación de la planta se encuentra alejada del territorio habitado y de yacimientos históricos.

7.2.3 Matrices del impacto causa-efecto

Una vez identificados los elementos del proyecto que pueden provocar impactos sobre el medio y los elementos del medio susceptibles de recibir ese impacto, se trata ahora de establecer las relaciones causa-efecto. Para ello se genera una matriz causa-efecto mediante cuadros de doble efecto, es decir, en una de las cuales se disponen las acciones del proyecto generadores de impacto y en la otra los elementos o factores ambientales receptores de los efectos. Ambas entradas han sido identificadas en apartados anteriores.

La matriz planteada constituye un sistema adecuado para revisar los efectos correspondientes a cada actividad del proyecto sobre los elementos del medio, cuantificando la magnitud de las diferentes influencias consideradas.

Se señalan en la siguiente tabla la serie de impactos durante las distintas fases del proyecto:

	ALTERNATIVA CONSIDERADA										
ACCIONES DEL PROYECTO	FASE DE CONSTRUCCIÓN					FASE DE EXPLOTACIÓN	FASE DE DESMANTELAMIENTO			IENTO	
FACTORES AMBIENTALES	Instalaciones auxiliares	Despeje y desbroce	Excavación y movimiento de tierras	Tránsito de materiales y circulación de magnipada	Préstamos y material sobrante	Producción, almacenamiento y aestión de residuos	Funcionamiento de las nuevas instalaciones	Desmantelamiento de módulos, saportes y canalizaciones	Retirada del cableado y desmontaje	Retirada de cimentaciones	Restitución de terrenos
Atmósfera: calidad del aire y ruidos		С	С	С				С	С		
Factores climáticos y cambio climático			NS				P	NS			
Geología			С								
Edafología		С	С			С		С		С	P
Hidrografía	С		M			С	С	С		С	С
Hidrogeología	С					С					С
Vegetación	С	С						NS		NS	Р
Fauna		С		С			M	С	С		
Figuras de protección		NS					NS	NS		NS	
Paisaje	С	С				С	С				Р
Socioeconomía						С	P		NS		С
Infraestructuras			С	С				С		С	
Salud humana				С					С		
Patrimonio cultural y vías pecuarias	С		С	M			С	М			
Efectos sinérgicos			С	NS		NS	С	NS			NS

7.3 VALORACIÓN PRELIMINAR DE IMPACTOS

Una vez inventariados de forma preliminar los principales valores ambientales de la zona de emplazamiento de la central fotovoltaica y de su entorno próximo, y descritas las principales afecciones previsibles del proyecto sobre ellos, se han estimado las siguientes valoraciones previas de dichas afecciones:

ELEMENTO	CONSTRUCCIÓN	FUNCIONAMIENTO
Clima	No significativo	No significativo
Calidad del aire	Media - baja	No significativo
Calidad acústica	Media	Baja
Geomorfología	Media	No significativo
Suelo	Media	No significativo
Hidrología	Baja	No significativo
Vegetación	Media	No significativo
Fauna	Media	Media - baja
Conectividad ecológica	Media - baja	Media - baja
Paisaje	Media	Media
Espacios protegidos	No significativo	No significativo
Patrimonio	Baja	No significativo
Estructura socioeconómica	Media	Media - baja

Tabla 7. Valoración preliminar de impactos.

Hay que reseñar una vez más que se trata de una valoración muy preliminar, con base en los elementos conocidos del medio hasta el momento. El Estudio de Impacto Ambiental del proyecto incorporará una matriz de impactos mucho más precisa, una vez realizados los pertinentes inventarios y trabajos de campo que permitan cuantificar adecuadamente cada uno de los previsibles impactos.

En todo caso, la mayor parte de los impactos analizados tienen magnitudes medias, bajas o muy bajas. El mayor impacto negativo, en general, parece ser la eliminación de vegetación y flora, así como de hábitats faunísticos, y la alteración del suelo producidas por los desbroces y movimientos de tierras. En segundo lugar, estarían las molestias provocadas a la fauna por la presencia y movimientos de maquinaria y personal. Durante la fase de funcionamiento el mayor impacto negativo sería debido a la propia presencia de la planta solar, que provocaría molestias a la fauna local.

Por el contrario, la infraestructura objeto del proyecto tiene un impacto positivo derivado de su funcionamiento (la generación de energía a partir de fuentes renovables, y la consiguiente eliminación de emisiones de CO2 y otros gases a la atmósfera). Además, la construcción y funcionamiento de la planta fotovoltaica supondrá la creación de empleo y el incremento de la actividad económica en la zona.

8. CARACTERÍSTICAS PRINCIPALES DEL PROYECTO

Sin perjuicio de lo que en su día se defina tras la elaboración del oportuno Estudio de Impacto Ambiental y los condicionantes que se expongan en la Declaración de Impacto, la promotora se compromete de forma preventiva a la adopción de las siguientes medidas:

8.1 PROTECCIONES AMBIENTALES DURANTE LA FASE PREOPERACIONAL

- Desde el inicio de las actividades relacionadas con la ejecución del Proyecto, la Dirección de Obra contará con el asesoramiento de un Técnico en Medio Ambiente a fin de ejecutar las tareas previstas en el Plan de Vigilancia Ambiental y adecuar las actividades para el cumplimiento de las medidas descritas a continuación.
- Se efectuará un inventario florístico exhaustivo para detectar la posible existencia de formaciones vegetales o especies protegidas y/o amenazadas recogidas en la legislación vigente o en los diferentes libros rojos y catálogos, a fin de preservar sus emplazamientos mediante acotado y balizado, e incluso mediante el replanteo de la ubicación de las instalaciones de la central.
- Asimismo, se realizará un inventario faunístico exhaustivo con el fin de detectar la
 existencia de poblaciones de especies protegidas y/o amenazadas que hubieran podido
 pasar desapercibidas en el inventario previo efectuado. Este estudio incluirá los grupos
 faunísticos menos conocidos en el momento de redactar el inventario previo incluido en
 el presente informe y que pudiesen ser afectados por las obras de construcción o el
 funcionamiento de la central fotovoltaica: mamíferos (especialmente micromamíferos y
 quirópteros), herpetofauna e invertebrados.
- También se llevará a cabo una prospección arqueológica superficial y, en su caso, los trabajos necesarios para la extracción de los restos localizados o a su preservación mediante balizado.
- Antes del comienzo de las obras se habrá de definir y señalizar mediante estacas y cinta balizadora el trazado exacto de los caminos, zanjas, zonas de acopio, parques de maquinaria, emplazamientos de seguidores solares, etc., delimitando los perímetros de dichas estructuras, teniendo en cuenta en todo momento la minoración de las superficies a ocupar y la no afección a los valores naturales y culturales detectados en los mencionados inventarios.
- Se establecerá una planificación temporal y espacial de las obras, con el objetivo de evitar que las actividades más molestas (grandes movimientos de tierras, movimientos masivos de maquinaria, etc.) coincidan con los periodos de cría de las especies más importantes localizadas en la prospección realizada.

8.2 PROTECCIONES AMBIENTALES DURANTE LA FASE DE CONSTRUCCIÓN

8.2.1 Medidas genéricas preventivas de afecciones ambientales

Con independencia de las medidas que se describan en el pertinente Estudio de Impacto Ambiental, se tendrán en cuenta las siguientes medidas preventivas relacionadas con la ejecución de obras, que constituyen un "Código de Buenas Prácticas en la Construcción", no específico de las actuaciones relacionadas con la construcción de plantas fotovoltaicas.

- Se informará a los responsables de obra y a los contratistas de la obligatoriedad de cumplimiento de las medidas preventivas y correctoras, de forma que éstos asuman todas las medidas propuestas en todas las labores a desarrollar, exigiéndose su cumplimiento e implantando o desarrollando las actuaciones precisas para que se cumplan los objetivos marcados en cuanto a la preservación de los valores naturales del entorno. Así, todas las medidas preventivas a tener en cuenta durante la fase de construcción se incluirán en los pliegos de prescripciones técnicas que han de regir los trabajos de construcción, y por tanto serán asumidas por los contratistas desde el inicio de los trabajos.
- El contratista será responsable del orden, limpieza y limitación de uso de suelo de las obras. Deberá adoptar a este respecto, a su cargo y responsabilidad, las medidas que le sean señaladas, como son:
 - Causar la menor afección posible sobre las propiedades, obras civiles, cultivos, pastizales, masas arbóreas o arbustivas o cerramientos que sea necesario cruzar y/o utilizar para acceder a las obras de la planta fotovoltaica, manteniéndolas en todo momento según las instrucciones del propietario.
 - Señalizar los accesos a las obras, de manera que todos los vehículos circulen por un mismo lugar y utilizando una sola rodada.
 - Revisar periódicamente la maquinaria para evitar derrames. Las labores de mantenimiento de dicha maquinaria (lavados, cambios de aceite, reparaciones, etc.) no se realizarán en las zonas de actuación sino en talleres existentes en la zona.
 - Además de éstas, y de forma previa a que se inicien los trabajos, se transmitirán el resto de las medidas que aquí se acompañan de forma que o bien el contratista las desarrolla él mismo o se asume que se deberán acometer los trabajos correspondientes para su desarrollo.
- Se evitará el levantamiento de polvo en las operaciones de carga y descarga de materiales, así como el apilamiento de materiales finos en zonas desprotegidas del viento para evitar el sobrevuelo de partículas. De considerarlo necesario se humedecerán las áreas de almacenamiento y depósito de materiales y se procederá al riego de caminos y zonas de movimiento y maquinaria si las condiciones de los mismos favoreciesen la generación de polvo.

- Únicamente se utilizará maquinaria de construcción que cumpla las Directivas de la UE en cuanto a niveles de ruido, y se realizará un uso y mantenimiento adecuado de la misma con el fin de reducir al máximo los niveles sonoros y las emisiones de gases.
- Se evitará el tráfico y los trabajos en horario nocturno.
- Se comprobará que las zonas de obra establecidas corresponden a las designadas en el proyecto y se determinará la idoneidad de las mismas. Si se considerase necesario para una menor afección al medio se designarían nuevas zonas para dichas tareas.
- Se minimizarán las superficies de acopio de materiales.
- Los depósitos de gasóleo u otros combustibles que sea necesario instalar en la zona contarán con cubetas impermeabilizadas a fin de recoger los eventuales derrames accidentales.
- Se almacenarán y eliminarán los materiales sobrantes de obra de forma adecuada, en el plazo más breve posible, y siempre antes de la recepción de las obras.
- En cuanto a la gestión de los residuos generados, se seguirán las siguientes directrices:
 - Los residuos de papel, cartón y plástico deberán almacenarse separativamente en contenedores para ser valorizados posteriormente.
 - Las tierras sobrantes serán trasladadas a un vertedero o emplazamiento autorizado.
 - Los residuos peligrosos generados (los aceites y los envases de líquido anticongelante) se deberán identificar, almacenar hasta su recogida por gestor autorizado y mantener un control documental de los mismos de acuerdo con lo establecido en la legislación vigente.
 - Los residuos generados por el personal laboral durante la fase de obras se recogerán en recipientes adecuados para su retirada hasta los contenedores municipales más próximos a fin de que entren en la dinámica del servicio de recogida de basuras municipal.

8.2.2 <u>Medidas preventivas y correctoras de las afecciones a la fauna</u>

- Se deberá prestar atención a no ocasionar molestias a la fauna presente en la zona, teniendo especial cuidado en el caso de especies catalogadas y durante las épocas de reproducción y cría de la avifauna, respetando siempre las distancias de seguridad pertinentes y cualquier indicación que realicen los Agentes del Medio Natural. No se molestará a la fauna con ruidos excesivos.
- Se debe realizar un inventario en detalle de la avifauna previamente a la ejecución de la obra, para evitar su afección, y 24 meses después de su finalización, con el fin de evaluar

la posible afección sobre las especies presentes en el ámbito de actuación del proyecto. La realización de los seguimientos se presentará en el Plan de Vigilancia Ambiental.

- En cuanto al establecimiento de medidas para evitar la colisión y la electrocución de avifauna se atenderá a lo establecido en la normativa sectorial vigente (Real Decreto 1432/2008, de 29 de agosto, por el que se establecen medidas para la protección de la avifauna contra la colisión y la electrocución en líneas eléctricas de alta tensión; Decreto 47/2004, de 20 de abril, por el que se dictan Normas de Carácter Técnico de adecuación de las líneas eléctricas para la protección del medio ambiente en Extremadura y Resolución de 14 de julio de 2014 de la Dirección General de Medio Ambiente, por la que se delimitan las áreas prioritarias de reproducción, alimentación, dispersión y concentración de las especies de aves incluidas en el Catálogo de Especies Amenazadas de Extremadura y se dispone la publicación de las zonas de protección existentes en la Comunidad Autónoma de Extremadura en las que serán de aplicación las medidas para la protección de la avifauna contra la colisión y la electrocución en las líneas eléctricas aéreas de alta tensión).
- Se deberá señalizar la línea eléctrica con dispositivos señalizadores salvapájaros, siendo los más recomendados por su eficacia los de tipo aspa. También se puede optar por los de tipo espiral o elementos con bandas centrales reflectantes para mejorar la visibilidad, instalando como mínimo uno cada 10 metros lineales, distribuidos a tresbolillo en los tres conductores, de forma que en un mismo conductor se sitúen cada 30 metros. Igualmente, se colocará una baliza luminosa por inducción, al objeto de hacer más visible la línea durante la noche o los días de escasa visibilidad. Se colocará una baliza por vano en el cable de tierra. Adicionalmente, se colocará en el conductor central 1 baliza luminosa por vano.
- Como medida para evitar la nidificación de cigüeñas blancas, la cruceta superior podrá llevar colocado un elemento antiposada-antinidificación con tonos que no generen impacto visual y evitando el disuasor de tipo paraguas, agujas y otros elementos punzantes.

8.2.3 Medidas preventivas y correctoras de las afecciones al medio biótico

Además de las ya señaladas en puntos anteriores en cuanto al replanteo de las instalaciones tras los resultados de los inventarios a realizar, se tendrán en cuenta las siguientes medidas:

• En el caso de verificarse en los inventarios a realizar la reproducción de especies protegidas en la zona de emplazamiento de la central fotovoltaica, se deberán establecer

las oportunas limitaciones en cuanto al periodo en que tenga lugar la fase de ejecución del Proyecto, especialmente en cuanto a sus fechas de inicio.

- Se pondrá especial cuidado en no dañar la vegetación arbórea autóctona y/o su regenerado existente en las zonas adyacentes, así como aquellos elementos de la vegetación arbustiva que pertenezcan a etapas sucesionales progresivas, como madroño, lentisco, cornicabra, durillo, labiérnago, rusco, etc. Se recomienda la señalización previa de los elementos a proteger para que el maquinista pueda diferenciarlos. No se efectuará ninguna actuación fuera de las zonas delimitadas previamente.
- No se emplearán herbicidas en las labores de limpieza de la vegetación.
- En caso de precisar cualquier actuación en el arbolado existente, se deberá cumplir con lo establecido en el Decreto 13/2013, de 26 de febrero, por el que se regula el procedimiento administrativo para la realización de determinados aprovechamientos forestales y otras actividades en la Comunidad Autónoma de Extremadura, modificado mediante Decreto 111/2015, de 19 de mayo.
- Si fuese necesaria la construcción de pasos canadienses, estos deberán ser diseñados de forma que permitan la salida a los pequeños vertebrados que accidentalmente puedan caer en su interior. Por tanto, deberán estar dotados de paredes laterales abiertas o paredes no verticales o rampas de salida en estos dos últimos casos con inclinaciones no superiores a 35°. Además, el suelo del foso no deberá tener estructuras impermeables (hormigón, cemento, ladrillo...) para evitar el anegamiento provisional o permanente de la estructura y prevenir el ahogamiento de ejemplares.
- Se conservará el sustrato vegetal de las zonas donde se produzcan movimientos de tierras, con el fin de que posteriormente sirva de sustrato y de banco de semillas natural para las acciones de restauración.

8.2.4 Medidas preventivas y correctoras del impacto paisajístico

Todas las superficies que hayan sufrido transformaciones o deterioro y cuya existencia no sean imprescindibles para la adecuada explotación de la central fotovoltaica serán restauradas conforme a lo indicado a continuación:

- Se procederá al reextendido de la capa superficial del terreno retirada al inicio de la actuación.
- Si tras la realización de los movimientos de tierra se formasen taludes, deberán tener una pendiente no superior a 35% y ser revegetados.

- Todas las superficies que hayan sufrido transformaciones o deterioro serán revegetadas con especies autóctonas de flora propias de la serie descrita en el epígrafe de vegetación potencial.
- Se impondrá en el Pliego de Condiciones un periodo de garantía para la implantación de la vegetación no inferior a dos años.
- Las posibles formaciones de cárcavas u otros procesos erosivos que puedan aparecer como consecuencia de las obras serán corregidos por el promotor durante toda la vida del proyecto.

8.2.5 <u>Medidas preventivas y correctoras de la afección al Patrimonio</u>

- De conformidad con lo dispuesto en la legislación extremeña y estatal sobre patrimonio cultural, para la realización del Estudio de Impacto Ambiental se realizará una prospección arqueológica superficial previa autorización de la Consejería de Cultura. Esta prospección incluirá las zonas de emplazamiento de la planta solar y cualquier otra que exija movimientos de tierra. Esta prospección será efectuada por un equipo de arqueólogos, y si se detectasen yacimientos de interés arqueológico se definirá y ejecutará, tras la solicitud de los oportunos permisos, un estudio con las catas precisas y necesarias para caracterizar la importancia del mismo.
- En cualquier caso, con independencia del resultado de esta prospección, se contará con una vigilancia arqueológica, por parte de técnicos especializados, de las tareas relacionadas con movimientos de tierra a fin de detectar la aparición de restos de interés, en cuyo caso se pondrá el hallazgo en conocimiento de las autoridades autonómicas competentes, que dictaminarán la forma correcta de actuación.

8.3 PROTECCIONES AMBIENTALES DURANTE LA FASE DE FUNCIONAMIENTO

Se llevará a cabo un Plan de Vigilancia Ambiental sobre todos los aspectos reseñados en este capítulo, así como sobre los demás condicionantes que se puedan exponer en el Estudio de Impacto Ambiental o en la Declaración de Impacto Ambiental.

8.3.1 Medidas preventivas y correctoras de las afecciones al medio biótico

- A fin de reducir las molestias y evitar los atropellos a la fauna que utilice la zona de implantación de la central fotovoltaica, se señalizará adecuadamente y limitará la velocidad de los vehículos de servicio y mantenimiento a 30 km/h.
- Si se detectase la utilización por tráfico rodado de zonas anejas a los caminos de acceso y servicio, pero fuera de los mismos se instalarán elementos disuasorios tales como bolardos naturales (de piedra).

8.3.2 Medidas preventivas y correctoras del impacto paisajístico

Estas recomendaciones serán detalladas de modo definitivo en una fase posterior, en acuerdo con las autoridades medioambientales competentes.

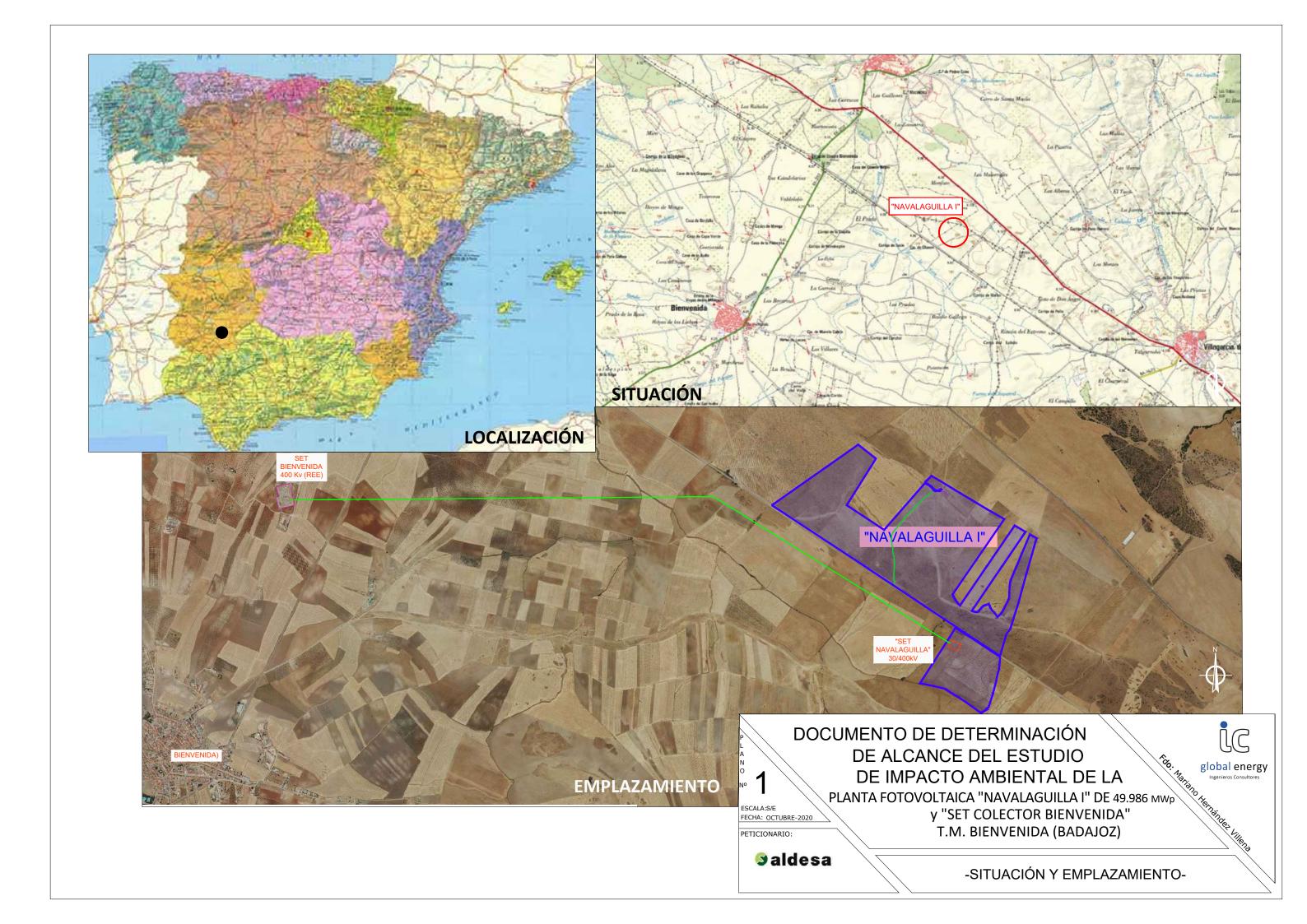
8.4 PROTECCIONES AMBIENTALES DURANTE LA FASE DE ABANDONO

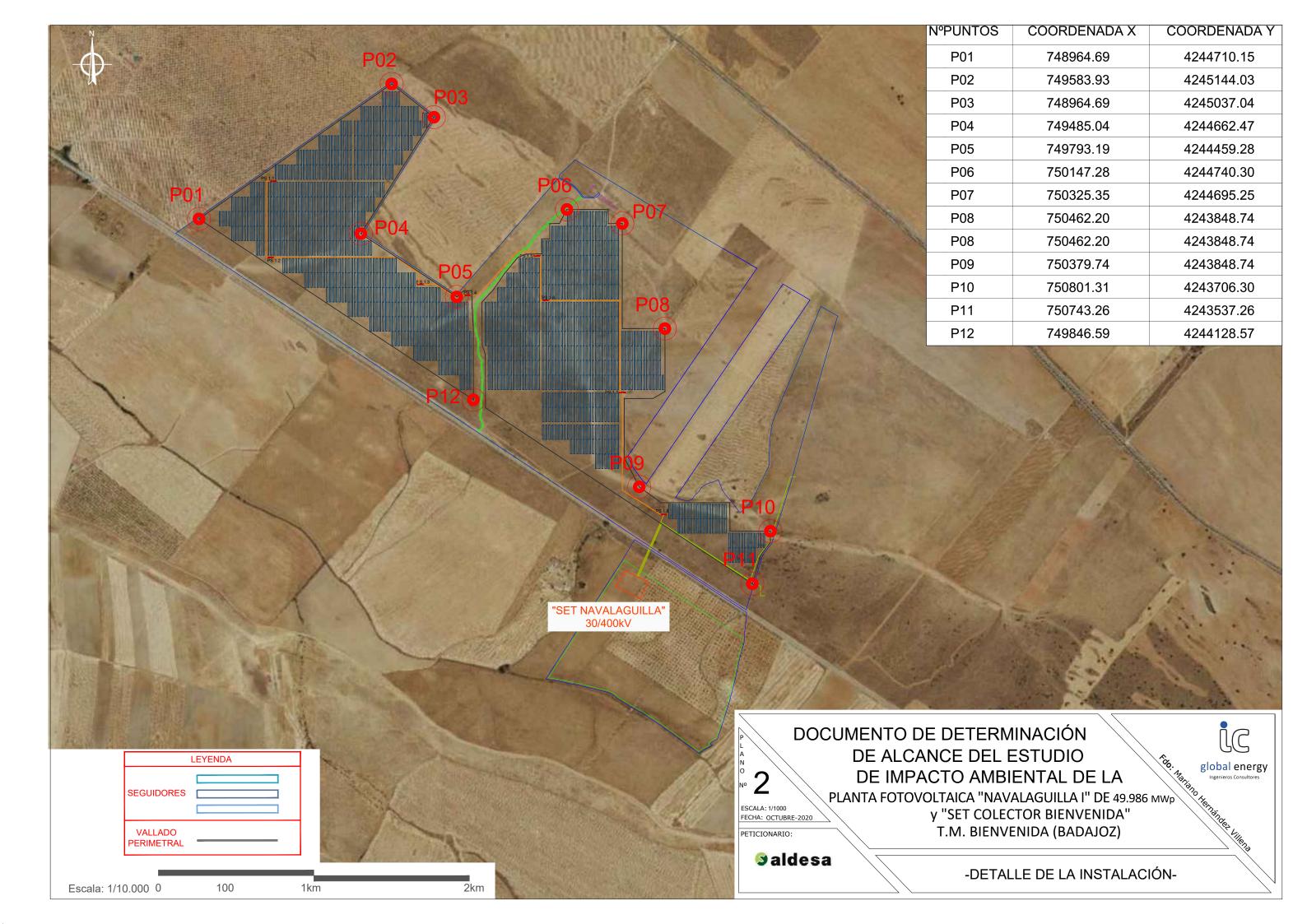
Si tras el periodo previsto de servicio de la instalación se decidiese proceder a su abandono se ejecutará un Plan de Abandono y Desmantelamiento con las siguientes directrices:

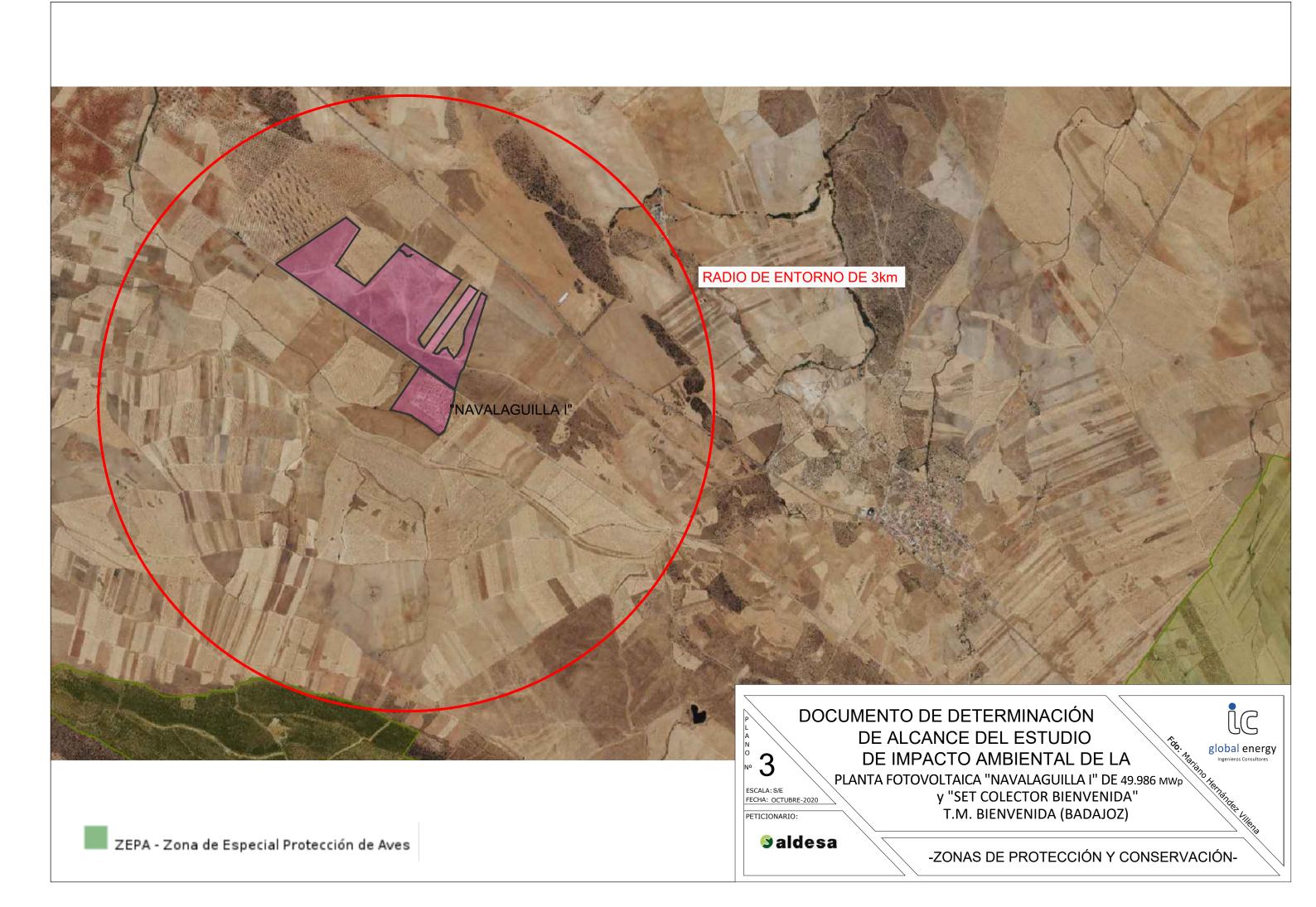
- Tras el fin de la vida útil de la planta fotovoltaica todas las estructuras serán totalmente desmanteladas y retiradas, debiendo ser tratados de acuerdo con la legislación vigente sobre residuos en el momento de su retirada.
- Las superficies de cimentación, plataformas y caminos serán objeto de un plan de restauración vegetal que tendrá como objetivo la restitución de la zona a las condiciones existentes previas al inicio de la actividad.
- Para las restauraciones se utilizarán especies autóctonas de flora propias de la serie descrita en el capítulo de vegetación. Además, se efectuará un plan de seguimiento, no menor de dos años de duración, de las plantaciones con reposiciones de marras de las zonas revegetadas.
- Las estructuras subterráneas (cableado y cimentaciones) deberán ser abandonados sin reabrirse las zanjas existentes, salvo que se contemple la restitución de estas conforme a lo indicado en el punto anterior.
- A fin de asegurar la eficacia de las revegetaciones, si en el momento de estas existiesen actividades ganaderas en la zona se deberá llegar a un acuerdo con los propietarios del mismo a fin de que no pastoreen la zona hasta, al menos, dos años tras la restauración. En algunos puntos especialmente sensibles se podrá instalar un vallado perimetral temporal que impida el acceso del ganado doméstico o de ungulados salvajes a las zonas revegetadas.

En Badajoz octubre de 2020

Ingenieros Consultores Global Energy s.l.


El Ingeniero Técnico Industrial Mariano Hernández Villena




PLANOS

- 1. EMPLAZAMIENTO DE LA PSF "Navalaguilla I"
- 2. DETALLE DE LA PSF " Navalaguilla I"
- 3. PLANO DE ÁREAS DE INTERES NATURAL PSF " Navalaguilla I"

